Seminar “6TiSCH Tri-Layer Network Architecture for Energy-Efficient Offloading in Smart Industries”

Seminar “6TiSCH Tri-Layer Network Architecture for Energy-Efficient Offloading in Smart Industries”

2021 The event passed
18 Jun
Location
Online
About the event

18 June at 16:30 MSK

The smart industry is a significant realization of the internet of things. IPv6 over time-slotted channel hopping (6TiSCH) is the new standard that has emerged as a promising technology for industrial communications. The demanding issues of smart industries include scalability, latency, and energy efficiency. Existing studies have presented scheduling schemes for 6TiSCH-based industries. However, these works are not suitable for practical scenarios where emergencies frequently occur. Hence, this study aims to improve scalability, latency, and energy efficiency in 6TiSCH-based smart industries for practical scenarios. A new fog assisted 6TiSCH Tri-Layer architecture is designed with a network layer, smart communication layer, and cloud layer. Scalability and latency are realized by fog computing in the smart communication layer. The rough set-based root selection (R2S) algorithm improves the network layer's energy efficiency by constructing an R2S and destination-oriented direct acyclic graph. Emergency cognizant distributed adaptive scheduling minimizes the latency for data transmission through fuzzy Bayesian learning-based parent selection and multiobjective gravitational search algorithm-based channel selection. In the fog layer, the rank-based Q-learning algorithm performs offloading to manage the energy consumption among fog nodes. Industrial data are stored in the cloud layer where they can be accessed by end users.

Online

Speaker

Mohammed Saleh Ali Muthanna, PhD., Chongqing University of Posts and Telecommunications.

Related EventsAll events
2021
11 Nov
XII All-Russian Scientific and Practical Conference "Mass Communication in a Multipolar World: Problems and Prospects"
2021
25 - 29 Oct
International online workshop "Mathematical Modelling in Biomedicine"