4
RUDN University soil scientist showed how waterlogging of soils due to climate change increases the greenhouse effect

RUDN University soil scientist showed how waterlogging of soils due to climate change increases the greenhouse effect

RUDN University soil scientist studied the soil samples of the Tibetan plateau. It turned out that the increase in soil moisture, which occurs due to the melting of permafrost and glaciers, will lead to an even greater increase in temperature. The findings suggest that waterlogging needs to be contained to slow global warming.

The main cause of global climate change is the increase in the concentration of carbon dioxide. It accumulates in the atmosphere and retains heat, the planet does not have time to cool down and turns into a “greenhouse” — a greenhouse effect occurs. Carbon dioxide is produced not only by people, even the soil “breathes” — carbon, which is contained in the earth as part of various compounds, comes out in the form of carbon dioxide and increases the temperature. Because of warming, glaciers are melting, permafrost is thawing — as a result, soil moisture increases. Until now, it was not known how increasing humidity would affect the amount of carbon dioxide that is released from the soil. To find out, the soil scientist from RUDN studied soil samples of the Tibetan highlands, where the temperature rises three times faster than the global average.

“Despite the fact that soil drainage accelerates the mineralization of carbon in the soil and the release of carbon dioxide, increasing humidity does not necessarily lead to the opposite effect — to slow down the mineralization and release of carbon dioxide. To find out this, we investigated how these processes take place in wetland and meadow soils with contrasting biochemical properties,” Yakov Kuzyakov, Doctor of Biological Sciences, Head of the Center for Mathematical Modeling and Design of Sustainable Ecosystems of the RUDN University.

Soil scientists took samples of meadow and swamp soil and determined which substances contain carbon-undecayed plant residues or decomposed biomass. Then the meadow soil was saturated with water up to 70% of the amount that it could hold as much as possible. Marsh soil, on the contrary, was drained, withstanding 95 days at 25 ℃. Then the soil scientists from RUDN University again measured the carbon content in the samples and calculated how much the release of carbon dioxide changed with a change in humidity.

It turned out that in both cases, carbon dioxide was released more intensively. The reason for this is considered by soil scientists to be the original composition of carbon in the samples. In swamp soil, carbon is mainly contained in the composition of plant residues that have not yet decomposed. The carbon of meadow soil is mainly in the already decomposed biomass, soil enzymes work more actively in it. As a result, in swamp soil, high humidity inhibits carbon mineralization and the release of carbon dioxide. In meadow soil, the opposite happens — saturation with water further activates mineralization and the release of carbon dioxide.

“We showed that the decomposition of soil carbon in water-filled soil depended on the initial fraction of plant and microbial residues. Our work speaks to the importance of the biochemical nature in regulating the decomposition of carbon. We have come to the conclusion that both drainage of wetlands and waterlogging of meadows increase carbon mineralization (measured as CO2 release),” Yakov Kuzyakov, Head of the Center for Mathematical Modeling and Design of Sustainable Ecosystems RUDN.

The findings prove that protecting meadow soils from waterlogging will help curb the release of carbon dioxide and slow warming. Otherwise, there is a chain reaction-an increase in the greenhouse effect will lead to even greater global warming, increase waterlogging of meadows, and so on.

The results are published in Soil Biology and Biochemistry.

International Projects View all
Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
2254
Similar newsletter View all
08 Aug
Focusing on science as a way of life, sustainable development goals as a scientist's mission and new technological developments: RUDN honored leaders in science and innovation

The RUDN University Science and Innovation Prize winners were honoured at the extended meeting of the Academic Council. In 2024 the terms of the traditional RUDN University Prize were changed: for the first time the competition was announced in two categories: leading scientists and young scientists.

97
08 Aug
RUDN University scientist: Africa relies on small modular reactors to solve energy problems

According to the International Energy Agency (IEA), electricity consumption in Africa has increased by more than 100% over the past two years (2020-2022). However, 74.9% of this energy is still produced by burning organic fuels — natural gas, coal and oil. At the same time, the level of electrification on the continent remains extremely low — only 24%, while in other developing countries it reaches 40%. Even in grid-connected areas, electricity supply is often unreliable: industrial enterprises lose energy on an average of 56 days a year.

89
08 Aug
RUDN dentists developed a program that will accelerate the work of an orthodontist by 40%

Today, diagnosis and treatment planning with orthodontists takes several days. Also, complications can arise during treatment that slow down the patient's recovery process. For example, improper orthodontic treatment planning can lead to temporomandibular joint dysfunction.

60
Similar newsletter View all