4
Chemist RUDN clarified the principle of action of enzymes that create omega-6 fats

Chemist RUDN clarified the principle of action of enzymes that create omega-6 fats

The chemist RUDN determined that the principle of action of some enzymes that create omega-6 fatty acids vital for humans differs from the idea accepted by biochemists. These enzymes create an additional double bond in the carbon chain of the fatty acid. It turned out that they "count" the right place not from the ends of the chain, as previously thought, but from the already existing double bond.

Fatty acids are a long chain of carbon atoms with branches. There is a carboxyl group (COOH) at one end, and a methyl group (CH3) at the other. Some carbon atoms can be connected not by a single bond, but by a double one — such acids are called unsaturated. They are usually called by the position of the double bonds, counting from the methyl or carboxyl end. In the first case, the name is marked with the letter omega, in the second — delta. For example, in vaccenic acid, the only double bond is at the 7 carbon atom from the methyl ring or at the 11 — from the carboxyl ring, so its name means either ω7 or Δ11. It is assumed that the enzymes that add new double bonds to the chain also "count" the desired carbon atom from one or the other end. The chemist RUDN showed for the first time that for some enzymes that produce vital omega-6 fats, this is not the case.

"Enzymes are extremely sensitive to the position and geometric configuration of newly introduced double bonds. How they do their counting is a long-standing question, to which there is no clear answer yet. Although it is assumed that the counting comes from the methyl or carboxyl end, there is no exact understanding of this mechanism yet. We have shown that for at least some enzymes, the counting is not carried out as previously thought,"- Sergey Goryainov, head of the Laboratory of Mass Spectrometry and high-resolution NMR Spectroscopy, RUDN University.

Enzymes that create double bonds in fatty acid chains are called desaturases. Each desaturase is designed to create an acid with a double bond only for a specific carbon atom. For example, omega-6 desaturase creates double bonds only at the sixth carbon atom, counting from the methyl end. Chemists have shown that for fatty acids with multiple double bonds, enzymes "count" the desired atom not from the end of the chain, but from the position of the already existing double bond. This was done using the example of omega-6 desaturases obtained from two types of bacteria - Gloeobacter violaceus and Synechocystis.

Cell cultures of two types of bacteria were grown on a solid nutrient medium, and then moved to a liquid medium, where their DNA was isolated. Chemists also measured the composition of fatty acids in bacteria. To accurately determine the position of the double bond, chemists used mass spectrometry. All these procedures were repeated at least three times. Comparing the presence of genes encoding desaturases and the composition of fatty acids, chemists concluded how desaturases determine the desired carbon atom in the chain. It turned out that these enzymes count three carbon atoms from the double bond towards the methyl end of the chain and create a double bond there.

"Our results show that the bacterial Δ12(ω6) desaturases count from the already existing double bond, and not from the ends. At the same time, the length of the chain does not matter,"- Sergey Goryainov.

The results are published in the journal Biochimie.

International scientific cooperation View all
16 Oct
530 applications, 90 young scientists from 30 countries. Darya Nazarova, a postgraduate student of RUDN Faculty of Economics, traveled 11,276 km from Moscow to Sao Paulo for the International Scientific School on Technological and Innovation Strategies and Economic Development Policy at the University of Campinas (UNICAMP). Darya Nazarova, a young RUDN scientist, writes about scientific research, rafting and the country of eternal carnival.
83
Student's Scientific Initiatives View all
03 Nov 2017
June 22 - 26, 2017 in Barnaul, Altai State University, took place the Summer Academy of the BRICS Youth Assembly, an international event that brought together representatives of different countries
1790
Similar newsletter View all
16 Oct
Green Diplomacy Center opened in RUDN

A Center for Green Diplomacy was created based on the RUDN Institute of Environmental Engineering. Among the goals is the integration of the results of scientific and practical activities into the development of international relations in the environmental sphere. The center's specialists will also accompany the corporate sector in solving various environmental problems.

130
19 Apr
A huge pizza and a jug of water, why should 5G networks be sliced? The winners of RUDN science competition explain

RUDN summarized the results of the scientific competition "Project Start: work of the science club ". Students of the Faculty of Physics, Mathematics and Natural Sciences have created a project for a managed queuing system using a neural network to redistribute resources between 5G segments. How to increase flexibility, make the network fast and inexpensive and reach more users — tell Gebrial Ibram Esam Zekri ("Fundamental Computer Science and Information Technology", Master's degree, II course) and Ksenia Leontieva ("Applied Mathematics and Computer Science", Master's degree, I course).

183
19 Apr
Lyricists and physicists are now on equal terms: the first humanitarian laboratory opened in RUDN

What is your first association with the word “laboratory”? Flasks and beakers? Microscopes and centrifuges? Yes, many of us would answer the same way.

230
Similar newsletter View all