1
RUDN Biotechnologists developed an effective technology for nutrient biocapture from wastewater

RUDN Biotechnologists developed an effective technology for nutrient biocapture from wastewater

RUDN biotechnologists proposed a new approach to extracting nutrients from wastewater using immobilized microalgae of the genus Lobosphaera. The resulting substances can be used as fertilizers.

Wastewater pollutes the environment and can cause natural water bodies to bloom. In addition, elements that could find useful applications are thrown away with it. Therefore, special man-made facilities are built to treat wastewater, and biotechnology often comes to the rescue. In this case microorganisms, including microalgae, which can be free-floating or attached to various filters, help decompose pollutants. RUDN biotechnologists proposed a new polymer design for such facilities, which will allow a times more efficient extraction of the necessary elements from wastewater, will be biodegradable and will not damage algae cells.

“Our team was the first c to successfully use cross-linked chitosan polymers to immobilize unicellular algae and make them effectively consume nutrients while at the same time not preventing them from growing and photosynthesizing”, — said Alexei Solovchenko, a PhD in Biology from the Department of Agrobiotechnology, RUDN University.

Chitosan is a substance from crustacean shells and cell walls of zygomycetes fungi. It is a polysaccharide with amino groups and its chemical composition is similar to that of chitin which strengthens its external skeleton arthropods. Chitosan is not water-soluble and therefore can be used to grow algae; does not disintegrate or decompose prematurely.

To make the polymers, long branched molecules with repeating similar links-monomers, it is necessary to cross-link chitosan molecules and glutaraldehyde molecules, a compound used for disinfection, preservation and fixation in dentistry, surgery, and other areas of medicine. The polymer of chitosan and glutaraldehyde was porous and hydrophilic, absorbing water, and did not interfere with algae growth for seven days.

The green microalgae that were bound with this polymer belong to the PPAS 2047 strain of the genus Lobosphaera, patented by the authors of the project.

Chitosan is a polysaccharide with amino groups and its chemical composition is similar to that of chitin that can be found in shellfish crusts and mushroom cell walls. Chitosan is not water-soluble and therefore can be used to grow algae. However, it is biodegradable. Using an original methodology developed in the Kurchatov Institute, it was cross-linked with glutaraldehyde molecules and thus turned into a strong biocompatible polymer. Then, the team grew the IPPAS C-2047 strain of the Lobosphaera incisa algae on it for seven days.

Based on the results of the seven-day long experiment, the team concluded that a complex of microalgae cells and chitosan-based polymer with a total molecular mass of 600 kDa was more effective than that with a molecular mass of 250 kDa. The algae on the filter captured the nutrients more efficiently than those suspended in the wastewater: specifically, they consumed phosphates 16.7 times and nitrates 1.3 times faster.

“Our team has demonstrated that cross-linked chitosan polymers are safe for the environment and effectively support the biocapture of nutrients from wastewater by unicellular algae. When added to a non-toxic medium, the algae biomass could be used as a fertilizer that would gradually release the accumulated nutrients into the soil,” added Alexei Solovchenko.

The results of the study were published in Journal of Water Process Engineering.

International Projects View all
Scientific Conferences View all
12 Dec 2024
About 200 participants from Russia and 20 countries met at the National Interdisciplinary Scientific Seminar with International Participation “Law in Medicine. Medicine in Law: Points of Contact”. The subject was “Happy Motherhood: unsolved problems of obstetrics, gynaecology and perinatology”.
138
Similar newsletter View all
20 Apr
A volunteer of the Red Army and head of the veterinary medicine course — Matilda Mityaeva's combat and scientific path

Matilda Pavlovna Mityaeva was born in 1925. In November 1942, she volunteered for frontline duty. She participated in the Great Patriotic War from November 1942 to June 1945 as part of the 53rd Infantry Division of the 475th Infantry Regiment. She was wounded twice.

24
20 Apr
RUDN University Team – the 1st place in the all-russian competitive selection of scientific projects “Technologies for human health”

The team led by Sergey Zyryanov, Head of the Department of General and Clinical Pharmacology, became the winner of the All-Russian competition of scientific projects "Technologies for Human Health".

32
20 Apr
RUDN University Scientific Agenda to 2030: New Programme for R&D and Innovation Activities Development

RUDN University constantly adapts to the changes of the modern world and responds to challenges flexibly. This allows us to keep the standard of a world-class research university. The sphere of science is no exception. Peter Dokukin, Head of the Research Division, presented the updated R&D Programme at the meeting of the RUDN University Academic Council.

23
Similar newsletter View all