RUDN Biologists Study Live Microorganisms in Toxic Liquids for Metalworking

RUDN Biologists Study Live Microorganisms in Toxic Liquids for Metalworking

RUDN biologists have studied microorganisms that can survive in metalworking fluids. The results will allow “picking up” bacteria and fungi that can process toxic waste fluids into a harmless product.

Metal parts during processing must be lubricated, cooled and protected with special liquids. Large factories annually use thousands of tons of such cutting fluids (coolants), which must be disposed of after use. Liquids are toxic, which makes it impossible to dispose of them with household waste. Once in the water, they make it dangerous to the environment. Microorganisms can cope with this problem. They can “digest” toxic residues and make water safer. This process is called biodegradation. To find such microorganisms, you need to find out which of them are able to survive in a toxic environment. To do this, RUDN biologists determined the composition of the microbiota in the coolant.

“Metalworking fluids are used to lubricate, cool and remove metal chips in turning, milling, boring, grinding, drilling and other operations. The disposal of such liquids is a serious problem. To reduce environmental damage, new methods are needed. Artificial introduction of cultures of microorganisms can accelerate the decomposition of used fluids. Therefore, we decided to study the fungal and bacterial microbiota of the waste fluids,” Sergey Elansky, Doctor of Biology, Professor at RUDN University’s Agrobiotechnological Department.

Biologists studied 9 types of liquids obtained from various metalworking enterprises using two methods. The first one is the traditional method of isolating pure cultures. The second is next generation sequencing (NGS). Using NGS, bacteria of 18 genera and fungi of 17 genera were identified that can grow in the coolant. Pure cultures of microorganisms were tested for growth in 6 different cutting fluids. The most active microorganisms for the biodegradation of waste liquids were selected — they turned out to be fungi of the genus Fusarium.

“Data on the species composition of microorganisms in waste metalworking fluids will allow us to develop specific and highly sensitive test systems that can be used to search for and evaluate the concentration of the most active degrading microorganisms. This will optimize and reduce the cost of waste coolant disposal,” Elena Chudinova, PhD, Head of the Laboratory for Molecular Analysis of Microorganisms at RUDN University.

The results are published in the Journal of Cleaner Production.

News
All news
Science
23 Oct 2024
RUDN University Space Week 2024: Outcomes

On October 7–10, 2024 RUDN University Space Week traditionally took place. This event was dedicated to the World Space Week, which is celebrated annually in accordance with the UN General Assembly Resolution 54/68 (December 6, 1999) from October 4 to 10 to commemorate the launch of the first artificial satellite Sputnik-1 on October 4, 1957, and the signing of the Outer Space Treaty on October 10, 1967 – the fundamental international treaty in the field of international space law.

Science
18 Jan 2024
RUDN University agronomist found wheat genetically resistant to fungus

A RUDN agrotechnologist has identified wheat genotypes that are resistant to a dangerous fungal pathogen that infects plants even before the snow melts and reduces yields.

Science
10 Jan 2024
RUDN Engineers Have Calculated the Parameters of the Heat Rejection System for a Lunar Power Plant

RUDN University engineers have calculated the parameters of a system that can prevent lunar power plants from overheating. These developments will be needed when planning for long-term lunar missions and colonizing the satellite.