1
The chemist from RUDN University, together with the colleagues, first created molecules’ catchers for energy source molecules of cells

The chemist from RUDN University, together with the colleagues, first created molecules’ catchers for energy source molecules of cells

For the first time, a team of Russian scientists together with RUDN University synthesized calixarenes capable of “trapping” adenosine triphosphoric acid (ATA) molecules and enclosing them inside their cavity. ATA molecules are a universal source of energy for most biochemical processes. They also act as an intercellular mediator.

The authors created a kind of molecular sensor that can not only recognize the ATA molecule among others, but also “capture” it. This was achieved thanks to the attachment to the upper part of the "bowl" of molecular receptors - groups of atoms that selectively bind only to compounds of a certain type. The atomic groups containing nitrogen introduced by scientists have shown high efficiency in the binding of ATA in solution.
Scientists synthesized several types of calixarenes. The first type included compounds with two or four attached receptors in the upper part of the molecule, the second in the lower part of the molecule. The remaining several types included combinations of the first two. After a detailed analysis of the chemical properties of each type of compound, the scientists revealed differences in their behavior and properties.
So, for example, when two specific groups are inserted in the lower part of the molecule, it begins to more efficiently bind adenosine diphosphoric acid (ADA) - a compound formed during the partial decomposition of ATA.

“Over the past two decades, many research groups have paid great attention to the synthesis of host molecules with high affinity for biologically important substances. Among these methods, the recognition and transfer of nucleotides — adenosine diphosphoric and adenosine triphosphoric acids — is of particular importance due to their great biological significance. Adenine-containing nucleotides are important as a universal source of energy and as intracellular mediators in many biological processes. For the first time, we created molecules based on calixarenes that can recognize ATA and ADA in a solution and bind to them at low concentrations ”says Viktor Khrustalyov, one of the authors of the work, doctor of chemical sciences, head of the inorganic chemistry department of the RUDN University.

Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
1452
Scientific Conferences View all
03 Nov 2017
RUDN University organized the first 5G Summit R&D Russia on June 19 - 20, 2017
1665
Similar newsletter View all
26 Dec 2022
Tissue architecture, cell organization, biomedical products: RUDN University opens a new research and educational resource center

On October 4, the Research and Educational Resource Center (REC) of innovative technologies of immunophenotyping, digital spatial profiling and ultrastructural analysis (molecular morphology) opened at the RUDN.

71
26 Dec 2022
RUDN scientists suggested how to help the soils of Zaryadye Park

RUDN University scientists conducted a comprehensive soil and environmental survey and took more than 80 soil samples in Zaryadye Park. An assessment of the physicochemical, microbiological, and ecotoxicological properties of soils made it possible to develop recommendations and a plan for the care of soils in analogous landscapes in the park.

99
26 Dec 2022
RUDN University Chemist Creates Nanofilter to Clean Water from Toxic Dyes

RUDN University chemist with colleagues from India and Korea created a nanofilter for water purification from synthetic dyes. The graphene-based composite can quickly remove up to 100% of harmful compounds from water, and it can be used up to seven times without losing efficiency. In addition, the synthesis of the nanofilter itself is economical and environmentally friendly.

66
Similar newsletter View all