3
Mathematicians from RUDN University and the Free University of Berlin proposed a new way of using neural networks for working with noisy high-dimensional data

Mathematicians from RUDN University and the Free University of Berlin proposed a new way of using neural networks for working with noisy high-dimensional data

Mathematicians from RUDN University and the Free University of Berlin have proposed a new approach to studying the probability distributions of observed data using artificial neural networks. The new approach works better with so-called outliers, i.e. input data objects that deviate significantly from the overall sample.

The restoration of the probability distribution of observed data by artificial neural networks is the most important part of machine learning. The probability distribution not only allows us to predict the behaviour of the system under study, but also to quantify the uncertainty with which forecasts are made. The main difficulty is that, as a rule, only the data are observed, but their exact probability distributions are not available. To solve this problem, Bayesian and other similar approximate methods are used. But their use increases the complexity of a neural network and therefore makes its training more complicated.

RUDN University and the Free University of Berlin mathematicians used deterministic weights in neural networks, which would help overcome the limitations of Bayesian methods. They developed a formula that allows one to correctly estimate the variance of the distribution of observed data. The proposed model was tested on different data: synthetic and real; on data containing outliers and on data from which the outliers were removed. The new method allows restoration of probability distributions with accuracy previously unachievable.

The mathematicians of RUDN University and the Free University of Berlin used deterministic weights for neural networks and used the networks outputs to encode the distribution of latent variables for the desired marginal distribution. An analysis of the training dynamics of such networks allowed them to obtain a formula that correctly estimates the variance of observed data, despite the presence of outliers in the data. The proposed model was tested on different data: synthetic and real. The new method allows restoring probability distributions with higher accuracy compared with other modern methods. Accuracy was assessed using the AUC method (area under the curve is the area under the graph that allows making assessment of the mean square error of the predictions depending on the sample size estimated by the network as “reliable”; the higher the AUC score, the better the predictions).

The article was published in the journal Artificial Intelligence.

30 Jan 2018
The conference on international arbitration, where law students from European universities simulate court proceedings and alternately defend the interests of the respondent and the orator.
996
Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
1456
Similar newsletter View all
26 Dec 2022
Tissue architecture, cell organization, biomedical products: RUDN University opens a new research and educational resource center

On October 4, the Research and Educational Resource Center (REC) of innovative technologies of immunophenotyping, digital spatial profiling and ultrastructural analysis (molecular morphology) opened at the RUDN.

74
26 Dec 2022
RUDN scientists suggested how to help the soils of Zaryadye Park

RUDN University scientists conducted a comprehensive soil and environmental survey and took more than 80 soil samples in Zaryadye Park. An assessment of the physicochemical, microbiological, and ecotoxicological properties of soils made it possible to develop recommendations and a plan for the care of soils in analogous landscapes in the park.

103
26 Dec 2022
RUDN University Chemist Creates Nanofilter to Clean Water from Toxic Dyes

RUDN University chemist with colleagues from India and Korea created a nanofilter for water purification from synthetic dyes. The graphene-based composite can quickly remove up to 100% of harmful compounds from water, and it can be used up to seven times without losing efficiency. In addition, the synthesis of the nanofilter itself is economical and environmentally friendly.

66
Similar newsletter View all