RUDN University chemist synthesized a coordination polymer iron with a derivative of nicotinic acid

Coordination polymers are compounds that consist of a metal atom and surrounding organic ligands. They are often more stable than pure organic substances. RUDN chemist Alexander Kirillov used a nicotinic acid derivative (H2cpna) as a building block in the synthesis, and iron atoms played the role of the metal center. Substituted nicotinic acid can act as a ligand — it contains one phenyl and one pyridine ring, which are linked by an ether functional group.
To synthesize the polymer, the reaction was performed under hydrothermal conditions between iron (II) sulfate in water and H2cpna at 160 ⁰C. The synthesis lasted three days. X-ray diffraction analysis and other methods were used to confirm the structure and characteristics of the obtained substance.
The catalytic activity of the substance for different reactions was studied. Alexander Kirillov from RUDN conducted the processes of oxidation and carboxylation of propane and cyclic alkanes (saturated hydrocarbons closed in a cycle) under mild conditions. The reaction yield was 23%. For comparison, in the industrial process of oxidation of cyclohexane to cyclohexanol and cyclohexanone (products that are used in the production of plastics), the yield is only 5-10%.
The study of the catalytic activity of the polymer obtained by RUDN chemists showed that it can be used to catalyze the processes of oxidative functionalization of saturated hydrocarbons, and provide a greater yield for the reaction under mild conditions.
Article in Crystals magazine.
RUDN University biologist with colleagues from Brazil and Iran found how to alleviate the stress of fish during transportation. It turned out that this can be achieved with salted water.