3
RUDN University chemist synthesized a new compound with strong anti-diabetic properties

RUDN University chemist synthesized a new compound with strong anti-diabetic properties

RUDN University chemist synthesized new derivatives of 1,2,4-triazole, which have pronounced antidiabetic properties. Experiments have shown that these molecules “work” better than acarbose — an existing hypoglycemic drug — and have antioxidant properties. In the future, they can be used to develop drugs against type 2 diabetes.

In the small intestine, the complex structure of starch is broken down into simpler oligosaccharides by the action of the enzyme α-amylase. Then, under the action of the enzyme α-glucosidase, the resulting oligosaccharides pass into glucose and other monosaccharides. If you inhibit — that is, “turn off” — one or both of these enzymes, the rate of carbohydrate absorption will decrease, and, consequently, the concentration of glucose in the blood will decrease. This antidiabetic effect makes researchers pay more and more attention to the search and synthesis of α-amylase and α-glucosidase inhibitors.

Yuness El Bakri from the RUDN University in collaboration with colleagues 17 have synthesized new derivatives of 1,2,4-triazole. They belong to the class of heterocycles — organic compounds that contain “rings” of carbon atoms and atoms of other elements. Due to their structure, which resembles that of natural products, heterocyclic compounds have interesting biologically active properties.

RUDN chemists studied the structure of new heterocyclic compounds using x-ray diffraction analysis and spectral methods. They then evaluated in vitro the inhibitory activity of all 1,2,4-triazole derivatives and compared them with acarbose, a hypoglycemic drug that inhibits α-glucosidase. All of the new compounds proved to be potent inhibitors of α-glucosidase, and three of them also demonstrated the ability to inhibit α-amylase.

Using molecular docking, a method for modeling the properties of molecules, the researchers showed that three triazole derivatives — 6 — methyl-7H,8H,9H-[1,2,4]triazolo[4,3-b][1,2,4]triazepine-8-one and 6-methyl-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazepine-8(9H)-thion-surpass acarbose in inhibitory activity relative to α — glucosidase.

Based on the results of experiments, RUDN biochemists selected the best conformation of 6-methyl-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazepine-8(9H)-thion in complex with α-glucosidase and performed its molecular dynamic modeling.

Calculations have shown that the degree of inhibition of α-glucosidase is mainly due to the number and strength of bonds between the compound and the active residues of the enzyme. The results obtained allow us to conclude that the synthesized compound is stable.

Younes El Bakri and his colleagues also showed the antioxidant properties of the new compounds. Chemists used a spectrophotometer to measure changes in the optical density of solutions containing specifically colored free radicals (ABTS cation-radical (2,2’-azinobis3-ethylbenzothiazoline-6-sulfonate) and DPPH radical (2,2-diphenyl-1-picrylhydrazyl)), to which antioxidants were added. Using these methods, they determined the ability of the antioxidant to interact with ABTS and DPPH radicals. Also, the antioxidant activity of 1,2,4-triazole derivatives was evaluated by evaluating the ability of antioxidant iron reduction.

The chemists concluded that the 1,2,4-triazole derivatives they obtained are promising for use as antidiabetic drugs. They expect that the properties of these substances will soon become the subject of Toxicological and pharmacological studies in vivo.

Article in the journal Bioorganic Chemistry.

International scientific cooperation View all
12 Dec 2024
From 19 to 23 November 2024, RUDN hosted the III International Scientific Conference ‘For the Sustainable Development of Civilisation: Cooperation, Science, Education, Technology’. The event gathered more than 2000 participants from 72 countries.
912
Scientific Conferences View all
12 Dec 2024
About 200 participants from Russia and 20 countries met at the National Interdisciplinary Scientific Seminar with International Participation “Law in Medicine. Medicine in Law: Points of Contact”. The subject was “Happy Motherhood: unsolved problems of obstetrics, gynaecology and perinatology”.
632
Similar newsletter View all
28 Nov
To chip the placenta. RUDN University researcher wins a competition for young scientists with a cell model

The project to develop a cellular model of the placenta became the winner in the Scientific Materials category of the Young Scientists 3.0 competition, organized with the support of the Presidential Grants Foundation and T-Bank.

79
28 Nov
The White List: 10 scientific journals from RUDN University have been included in the first highest level of the state list of scientific publications

Ten scientific journals published by RUDN University have been included in the highest level of the state list of scientific publications, the White List.

101
28 Nov
The role of fungi in maintaining tree diversity has been unraveled – a global study involving scientists from RUDN University

Forests are not only the lungs of the planet, but also home to millions of species. However, it has remained unclear how underground interactions between trees and fungi affect forest species richness in different climatic conditions. Previous studies have yielded conflicting results: in some regions, the dominance of certain fungi reduced tree diversity, while in others it increased it.

75
Similar newsletter View all