3
RUDN University chemists proposed a way to reduce three times the temperature for the oxidation of alkanes

RUDN University chemists proposed a way to reduce three times the temperature for the oxidation of alkanes

RUDN University chemists and their colleagues from the Russian Academy of Sciences have proposed new catalysts that allow to reduce the temperature of the oxidation reaction of alkanes three times — from 150 to 50 degrees. This significantly reduces the cost of synthesizing alcohols, aldehydes and other compounds needed, in particular, for the production of nylon and capron.

Until now, the reaction of catalytic oxidation of alkanes to alcohols, aldehydes, ketones, carboxylic acids could be carried out only at high temperatures — 150 degrees Celsius and above. Lowering the process temperature will simplify the synthesis and significantly reduce the cost of the final products. But this requires new catalysts.

Chemists Georgy Shulpin and Alexey Bilyachenko from RUDN University together with colleagues from the Russian Academy of Sciences synthesized two new organoelemental compounds with a framework structure that can significantly reduce the oxidation temperature of alkanes — from 150 to 50 degrees Celsius.

These catalysts are based on silsesquioxanes — polymeric compounds with the general formula [RSiO3/2]n, (sesqui in Latin means “one and a half”). For their synthesis, a simple two-stage scheme is used. The first structure is formed in tetrahydrofurane and contains Cu4Na4, the second in dimethylformamide and contains Cu5. RUDN University chemists studied the molecular structure of the obtained compounds, and also a structure of the supramolecular structures formed by them in crystals.

The researchers tested the catalytic activity of these compounds using them as catalysts for the oxidation reaction of hexalnethylene to cyclohexanol and cyclohexanone under the action of hydrogen peroxide in acetonitrile at 50 degrees. The conversion — the ratio of the amount of the obtained product to the theoretically possible amount — was about 25% in this reaction, which is comparable to the indicators of the traditional high-temperature method. In addition, chemists used these catalysts in the oxidation reaction of cyclohexanol to cyclohexanone and 1-phenylethanol to acetophenone under the action of tert-butyl hydroperoxide at the same temperature. The conversion in the case of cyclohexanol was about 40%, and the oxidation of 1-phenylethanol to acetophenone was almost complete. Thus, chemists took an important step to simplify the technology of the synthesis of a number of important compounds for industry.

Chemists emphasize that the production of cyclohexanone from hexalnethylene is important since from cyclohexanone adipic acid is obtained — the raw material for the production of nylon-6,6, and caprolactam — the raw material for the production of capron (nylon-6). Now in the industry, the process of synthesis of cyclohexanone from hexalnethylene is carried out at a temperature of about 150 degrees; the new method will reduce the temperature to 50 degrees.

The article is published in the journal Catalysts.

International scientific cooperation View all
03 Nov 2017
The main goal of the RUDN University and UNISDR Office for Northeast Asia and Global Education and Training Institute for Disaster Risk Reduction at Incheon (UNISDR ONEA-GETI) cooperation is to obtain knowledge about disaster risk reduction and international experience in this area for creating training courses for basic and additional professional education in RUDN
1385
Scientific Conferences View all
03 Nov 2017
RUDN University organized the first 5G Summit R&D Russia on June 19 - 20, 2017
1783
Similar newsletter View all
07 Jul
RUDN University Biologist: salted water saves fish from stress when transporting

RUDN University biologist with colleagues from Brazil and Iran found how to alleviate the stress of fish during transportation. It turned out that this can be achieved with salted water.

59
20 Apr
RUDN University agronomists increased wheat yield by 65%

RUDN University agronomists have proposed a new scheme for fertilizing winter wheat, which allows increasing the yield by 68%. The key to this is in the combination of nitrogen and growth regulators.

119
20 Apr
RUDN Biologists Study Live Microorganisms in Toxic Liquids for Metalworking

RUDN biologists have studied microorganisms that can survive in metalworking fluids. The results will allow “picking up” bacteria and fungi that can process toxic waste fluids into a harmless product.

114
Similar newsletter View all