RUDN chemist, along with colleagues from the RAS Institutes, simplified the synthesis of antitumor compounds

RUDN chemist, along with colleagues from the RAS Institutes, simplified the synthesis of antitumor compounds

A RUDN chemist in collaboration with colleagues from N.D. Zelinsky Institute of Organic Chemistry and N.K. Koltsov Institute of Developmental Biology (IDB), RAS have developed a new method for the synthesis of isoxazole derivatives — substances that destabilize the process of cell division and potentially may become the basis for new anti-cancer drugs. The new method is based on the use of easily available reagents and does not require high temperatures.

Many modern anticancer drugs are toxic, difficult to access and/or very expensive. Moreover, tumor cells may develop resistance to the drugs used. Therefore, researchers study the biological properties of molecules in order to obtain new antitumor drugs with optimal properties. One of the common approaches to the search for such drugs is testing of analogues of substances that already showed antitumor activity. Such substances include, in particular, isoxazole derivatives that inhibit — “turn off” — the Hsp90 protein, which is necessary for the survival of tumor cells. However, compounds of this class are inaccessible due to the complexity of the synthesis procedure, which requires, in particular, the complete absence of water molecules, and the reagents are expensive and toxic.

RUDN chemist Viktor Khrustalev and his colleagues developed a method for the synthesis of isomers of these substances, that is, the compounds that are identical in atomic composition but different in the arrangement of atoms in space. Easily accessible derivatives of arylnitromethanes and chloroacetamides were used as raw materials, and the reaction itself was carried out at temperatures not exceeding 80 degrees at atmospheric pressure and did not require anhydrous conditions.

The obtained substances had anticancer activity, but unlike the prototype compounds, they did not inhibit Hsp90 protein. Their mechanism of action is based on the destabilization of the cell division process as they prevent the formation of microtubules, which are important in the process of cell division.

Taxol derivatives, one of the most commonly used antitumor agents, have the same mechanism of action. Basing on the compounds obtained by the scientists, it is possible to create a substitute for an expensive, inaccessible and highly toxic derivatives of taxol in the treatment of cancer.

The work was published in European Journal of Organic Chemistry. 

International scientific cooperation View all
03 Nov 2017
The main goal of the RUDN University and UNISDR Office for Northeast Asia and Global Education and Training Institute for Disaster Risk Reduction at Incheon (UNISDR ONEA-GETI) cooperation is to obtain knowledge about disaster risk reduction and international experience in this area for creating training courses for basic and additional professional education in RUDN
Scientific Conferences View all
03 Nov 2017
RUDN University organized the first 5G Summit R&D Russia on June 19 - 20, 2017
Similar newsletter View all
20 Apr
RUDN University agronomists increased wheat yield by 65%

RUDN University agronomists have proposed a new scheme for fertilizing winter wheat, which allows increasing the yield by 68%. The key to this is in the combination of nitrogen and growth regulators.

20 Apr
RUDN Biologists Study Live Microorganisms in Toxic Liquids for Metalworking

RUDN biologists have studied microorganisms that can survive in metalworking fluids. The results will allow “picking up” bacteria and fungi that can process toxic waste fluids into a harmless product.

20 Apr
The chemist RUDN created a catalyst for more efficient oxidation of cyclohexane

The chemist of RUDN together with colleagues from Iran and Spain created a catalyst based on palladium and nickel for the oxidation of cyclohesane in the production of adipic acid, which is used for the production of cleaning products, food dyes and other substances. The new catalyst made it possible to double the consumption of cyclohexane.

Similar newsletter View all