4
RUDN University ecologists developed new models to identify environmental pollution sources

RUDN University ecologists developed new models to identify environmental pollution sources

According to a team of ecologists from RUDN University, polycyclic aromatic hydrocarbons (PAHs) can be used as pollution indicators and help monitor the movement of pollutants in environmental components such as soils, plants, and water. To find this out, the team conducted a large-scale study of a variety of soil, water, and plant samples collected from a vast area from China to the Antarctic. The results of the study were published in the Applied Geochemistry journal.

Geochemical barriers mark the borders between natural environments at which the nature of element transfer changes dramatically. For example, the concentration of oxygen rapidly increases at groundwater outlets, because different chemical elements oxidize and accumulate on the barrier. A team of ecologists from RUDN University was the first in the world to suggest a model that describes the energy of mass transfer, i.e. the movement of matter in an ecosystem. In this model, polycyclic aromatic hydrocarbons (PAHs) are used as the markers of moving substances. PAHs are mainly toxic organic substances that accumulate in the soil. The team used their composition to monitor pollutions and track down their sources. To do so, the ecologists calculated the physical and chemical properties of PAHs and classified them.

“We developed a model that shows the accumulation, transformation, and migration of PAHs. It is based on quantitative measurements that produce more consistent results than descriptive visualizations. This helped us understand how physical and chemical properties of PAHs determine their accumulation in the environment,” said Prof. Aleksander Khaustov, a PhD in Geology and Mineralogy, from the Department of Applied Ecology at RUDN University.

PAHs can form due to natural causes (e.g. wildfires) or as a result of human activity, for example as the waste products of the chemical and oil industry. The team studied 142 water, plant, soil, and silt samples from different geographical regions. Namely, some samples were taken in the hydrologic systems of the Kerch Peninsula, some came from leather industry areas in China, from the vicinity of Irkutsk aluminum smelter, and different regions of the Arctic and Antarctic. Several snow samples were taken on RUDN University campus in Moscow. All collected data were unified, and then the amount of PAHs in each sample was calculated. After that, the results were analyzed in line with the thermodynamic theory to calculate entropy, enthalpy, and Gibbs energy variations. The first value describes the deviation of an actual process from the ideal one; the second one shows the amounts of released or consumed energy, and the third points out the possibility of mass transfer.

“Though our samples were not genetically uniform, they allowed us to apply thermodynamic analysis to matter and energy transfer in natural dissipative systems,” added Prof. Aleksander Khaustov.

The team identified several factors that have the biggest impact on PAHs accumulation. For example, in the ecosystems surrounding leather facilities in China, the key factor turned to be entropy variations, while on RUDN University campus it was the changes in Gibbs energy. The team described three types of processes that are characterized by the reduction, stability, or increase of all three thermodynamic parameters, respectively. Based on this classification and the composition of PAHs one can monitor pollution and track down its source.

The article was published in Applied Geochemistry.

Student's Scientific Initiatives View all
03 Nov 2017
June 22 - 26, 2017 in Barnaul, Altai State University, took place the Summer Academy of the BRICS Youth Assembly, an international event that brought together representatives of different countries
1790
International scientific cooperation View all
16 Oct
530 applications, 90 young scientists from 30 countries. Darya Nazarova, a postgraduate student of RUDN Faculty of Economics, traveled 11,276 km from Moscow to Sao Paulo for the International Scientific School on Technological and Innovation Strategies and Economic Development Policy at the University of Campinas (UNICAMP). Darya Nazarova, a young RUDN scientist, writes about scientific research, rafting and the country of eternal carnival.
83
Similar newsletter View all
16 Oct
Green Diplomacy Center opened in RUDN

A Center for Green Diplomacy was created based on the RUDN Institute of Environmental Engineering. Among the goals is the integration of the results of scientific and practical activities into the development of international relations in the environmental sphere. The center's specialists will also accompany the corporate sector in solving various environmental problems.

131
19 Apr
A huge pizza and a jug of water, why should 5G networks be sliced? The winners of RUDN science competition explain

RUDN summarized the results of the scientific competition "Project Start: work of the science club ". Students of the Faculty of Physics, Mathematics and Natural Sciences have created a project for a managed queuing system using a neural network to redistribute resources between 5G segments. How to increase flexibility, make the network fast and inexpensive and reach more users — tell Gebrial Ibram Esam Zekri ("Fundamental Computer Science and Information Technology", Master's degree, II course) and Ksenia Leontieva ("Applied Mathematics and Computer Science", Master's degree, I course).

184
19 Apr
Lyricists and physicists are now on equal terms: the first humanitarian laboratory opened in RUDN

What is your first association with the word “laboratory”? Flasks and beakers? Microscopes and centrifuges? Yes, many of us would answer the same way.

231
Similar newsletter View all