4
RUDN University physicist developed software solution to measure the black holes stability

RUDN University physicist developed software solution to measure the black holes stability

Even if a black hole can be described with a mathematical model, it doesn’t mean it exists in reality. Some theoretical models are unstable: though they can be used to run mathematical calculations, from the point of view of physics they make no sense. A physicist from RUDN University developed an approach to finding such instability regions.

The existence of black holes was first predicted by Einstein’s general theory of relativity. These objects have so strong gravitational pull that nothing, not even light, can escape them. Dense and massive, black holes deform space-time (a physical construct with three spatial and one temporal dimension). Many mathematical models used to describe black holes include corrections to account for such space-time curvatures. The main condition of existence for every black hole model is its stability in cases of minor spatial or temporal changes. Mathematically unstable black holes make no physical sense, as the objects they describe cannot exist in reality. A physicist from RUDN University suggested a method to identify black hole instability parameters in 4D space-time.

“For a model to be considered feasible, a black hole described by it has to remain stable in case of minor space-time fluctuations. One of the most promising approaches to developing alternative gravity theories includes adding corrections to Einstein’s equation, including the fourth-order Gauss-Bonnet correction and the Lovelock correction that provides a higher level of generalization,” said Roman Konoplya, a researcher at the Educational and Research Institute of Gravitation and Cosmology, RUDN University.

The physicist studied stability in the Einstein-Gauss-Bonnet theory in which a black hole is described by Einstein’s equation with a fourth additional component. Previously, he had focused on a different mathematical description of a black hole, the so-called Lovelock theory, that describes a black hole as a sum of an infinite number of components. The instability region turned out to be closely associated with the values of the so-called coupling constants: numerical coefficients by which the corrections to Einstein’s equation are multiplied.

According to the physicist, the Einstein-Gauss-Bonnet model does not provide for the existence of small black holes, because if coupling constants are relatively big compared to other parameters (such as the radius of a black hole), the model almost always turns out to be unstable. The stability region is much bigger if the coupling constant has a negative value. Based on these calculations, he and his team developed a program to calculate black hole stability based on any of its parameters.

“Our approach helps test black hole models for stability. We made the code publicly available so that any of our colleagues could use it to calculate instability regions for models with an unspecified set of parameters,” added Roman Konoplya.

The work was published in the Physics of the Dark Universe journal.

Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
1212
30 Jan 2018
The conference on international arbitration, where law students from European universities simulate court proceedings and alternately defend the interests of the respondent and the orator.
820
Similar newsletter View all
31 Mar
RUDN University awards for specific areas of science and technology based on the results of 2021

Every year, RUDN University selects the best of the best in the field of science and innovation and encourages with a special reward. Since 2009, the Academic Council of the University has been awarding one reward in natural and technical sciences and the other one in social and humanitarian sciences. Both individual researchers and groups of authors can become laureates.

72
31 Mar
International Day of Women and Girls in Science: women scientists of the RUDN talk about their path to science

“Science is the basis of all progress that facilitates the life of mankind and reduces its suffering,” — Marie Sklodowska—Curie. A symbol of a woman’s success in science. The first scientist in the world — twice winner of the Nobel Prize.

313
31 Mar
RUDN University Mathematicians Create a Model for Queue Organizing with Self-Sustained Servers

RUDN University mathematicians proposed a model for optimizing the operation of queuing systems (from computer networks to stores). Unlike analogues, the servers in it are self-sustained. They can determine when to start and stop working themselves. Such a model can be useful, for example, for online taxi services and other systems where workers choose their own operating hours.

79
Similar newsletter View all