4
A Chemist from RUDN University Developed a New Method for Combating Antibiotic Resistance in Microbes

A Chemist from RUDN University Developed a New Method for Combating Antibiotic Resistance in Microbes

Bacteria in biofilms are 1,000 times more resistant to antibiotics, disinfectants, mechanical treatment, and other types of stress. A chemist from RUDN University suggested a method to prevent the formation of biofilms and reduce the resistance of bacteria to antimicrobial medications. This might help increase the efficiency of antibacterial treatment in the food industry, medicine, and agriculture.

Bacteria that are protected by a biofilm are more resistant to antibiotics and other adverse environmental factors, and this resistance usually builds up faster than the modern industry is able to produce new drugs. Such bacteria include salmonella that is a major issue both for medicine and the food industry. Scientists constantly search for new approaches that would help reduce resistance levels in bacteria.

“Our strategy has already proven to be successful against biofilms formation on titanium implants, and we are currently working on expanding its applicability to the industrial and food production fields. Since the mechanism of action was partially elucidated, we have foreseen the potential of our technology to revolutionise the way to fight biofilm associated infections. Our future research will greatly benefit from these findings as resistance development usually poses a major threat to the success of antimicrobials,” said Prof. Erik V. Van der Eycken, the Head of the Joint Institute for Chemical Research at RUDN University.

The strategy is based on inhibiting the formation of bacterial films. In the course of the study, the team mixed two strains of salmonella: one of them was able to form biofilms, and the other wasn’t. Then, the speed of their growth was compared. Similarly, the speed of growth was measured for the same mixture of two strains in the presence of 5-aryl-2-aminomidazole, an inhibitor that slows down film formation. It turned out that the strains that were unable to form biofilms propagated more intensively and forced other strains out.

The team also discovered that salmonella did not develop resistance against biofilm inhibitors. Biofilms are quite beneficial for bacteria: the cells that don’t waste their resources on forming them begin to divide more actively. If some bacteria in a medium are resistant to an inhibitor, they divide slower and are eventually forced out of the culture, leaving the films for other bacteria to thrive on.

According to the team, the share of resistant strains reduced from 12% to 1% in 16 days after the incubation of the strain mixture with the inhibitor. The scientists concluded that resistant bacteria are driven out of their cultures and that general resistance against inhibitors is not favored by natural selection.

When the production of biofilm matrix is inhibited, it becomes more difficult for cells to attach to surfaces and their susceptibility to antimicrobial drugs increases. For example, salmonella strains form biofilms both inside and outside of a host making them hard to get rid of by means of mechanical treatment, disinfectants, antibiotics, or the host’s own immune system. The approach suggested by the team could make the fight against pathogenic microorganisms more successful while at the same time preventing the development of resistance.

The new method would increase the efficiency of antibacterial therapy and help combat the most widely spread biofilm infections in medicine, food industry, pharma, and agriculture.

The article was published in the Nature Communications journal.

International scientific cooperation View all
03 Nov 2017
The main goal of the RUDN University and UNISDR Office for Northeast Asia and Global Education and Training Institute for Disaster Risk Reduction at Incheon (UNISDR ONEA-GETI) cooperation is to obtain knowledge about disaster risk reduction and international experience in this area for creating training courses for basic and additional professional education in RUDN
1230
Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
1401
Similar newsletter View all
26 Dec 2022
Tissue architecture, cell organization, biomedical products: RUDN University opens a new research and educational resource center

On October 4, the Research and Educational Resource Center (REC) of innovative technologies of immunophenotyping, digital spatial profiling and ultrastructural analysis (molecular morphology) opened at the RUDN.

29
26 Dec 2022
RUDN scientists suggested how to help the soils of Zaryadye Park

RUDN University scientists conducted a comprehensive soil and environmental survey and took more than 80 soil samples in Zaryadye Park. An assessment of the physicochemical, microbiological, and ecotoxicological properties of soils made it possible to develop recommendations and a plan for the care of soils in analogous landscapes in the park.

44
26 Dec 2022
RUDN University Chemist Creates Nanofilter to Clean Water from Toxic Dyes

RUDN University chemist with colleagues from India and Korea created a nanofilter for water purification from synthetic dyes. The graphene-based composite can quickly remove up to 100% of harmful compounds from water, and it can be used up to seven times without losing efficiency. In addition, the synthesis of the nanofilter itself is economical and environmentally friendly.

32
Similar newsletter View all