4
RUDN University soil scientist: Paddy soil fertilization can help reduce greenhouse effect

RUDN University soil scientist: Paddy soil fertilization can help reduce greenhouse effect

A soil scientist from RUDN University discovered the effect of fertilization on the ability of the soil to retain carbon. To understand this mechanism, he and his team studied the movement of organic carbon in the soil of rice paddies. The results of the study can help increase the fertility of the paddies while at the same time reducing the volume of greenhouse gases in the atmosphere.

The main reason for global climate change is the increasing amount of carbon dioxide in the atmosphere. CO2 prevents thermal emissions from leaving our planet, and the so-called greenhouse effect occurs. Being able to absorb up to 10% of carbon dioxide from the atmosphere (which amounts to approximately 20,000 megatons of carbon in 25 years), soils could mitigate this effect. A soil scientist from RUDN University studied the mechanism of carbon retention in the soils of rice paddies that account for 40% of natural atmospheric carbon absorption in China. According to him, the ability of the soil to retain carbon depends, among other factors, on its structure and the presence of fertilizers.

"The soils of rice paddies play an important role in mitigating the consequences of global warming and contribute a lot to the retention of carbon. The most effective way to study the processes that lead to the accumulation of organic carbon in the soil is to measure the concentration of its isotopes. We used this method to find out how mineral and organic fertilizers affect carbon flows between fractions of different density in rice paddy soils," said Yakov Kuzyakov, the Head of the Center for Mathematical Modeling and Design of Sustainable Ecosystems at RUDN University.

The team studied three groups of soils with different types of fertilizers: azophoska, or nitrogen-phosphorus-potassium fertilizer, was added to the first group; the second one contained azophoska with straw, and the third--azophoska with organic supplements. The content of carbon in the soils and its movement between density fractions was determined based on the ratio of 13C and 12? isotopes. The second and the third group showed better carbon retention results: after fertilization, their carbon content grew by 69%, while the increase in the first group amounted to 30%.

The scientists also paid attention to the changes in soil structure under the influence of fertilizers and the effect of such changes on carbon retention. Fertilizers consolidate the structural elements of the soil, and the number of large soil particles (over 0.25 mm in diameter) grows. Soils of medium density showed the highest carbon retention efficiency after fertilization: the amount of accumulated carbon increased by 70% compared to unfertilized soils. Less dense soil fractions showed a 21-56% increase, and carbon retention in dust and clay grew by 24-49%.

"We confirmed that fertilizers support organic carbon retention in the soil. Knowing this, we could better understand the processes that lead to the accumulation of soil carbon in rice paddies. These agricultural ecosystems already play an important role in world food security and now can also help us combat climate change," added Yakov Kuzyakov.

An article about the study was published in the Soil Biology and Biochemistry journal.

International scientific cooperation View all
12 Dec 2024
From 19 to 23 November 2024, RUDN hosted the III International Scientific Conference ‘For the Sustainable Development of Civilisation: Cooperation, Science, Education, Technology’. The event gathered more than 2000 participants from 72 countries.
31
Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
1914
Similar newsletter View all
16 Oct 2024
Green Diplomacy Center opened in RUDN

A Center for Green Diplomacy was created based on the RUDN Institute of Environmental Engineering. Among the goals is the integration of the results of scientific and practical activities into the development of international relations in the environmental sphere. The center's specialists will also accompany the corporate sector in solving various environmental problems.

160
19 Apr 2024
A huge pizza and a jug of water, why should 5G networks be sliced? The winners of RUDN science competition explain

RUDN summarized the results of the scientific competition "Project Start: work of the science club ". Students of the Faculty of Physics, Mathematics and Natural Sciences have created a project for a managed queuing system using a neural network to redistribute resources between 5G segments. How to increase flexibility, make the network fast and inexpensive and reach more users — tell Gebrial Ibram Esam Zekri ("Fundamental Computer Science and Information Technology", Master's degree, II course) and Ksenia Leontieva ("Applied Mathematics and Computer Science", Master's degree, I course).

207
19 Apr 2024
Lyricists and physicists are now on equal terms: the first humanitarian laboratory opened in RUDN

What is your first association with the word “laboratory”? Flasks and beakers? Microscopes and centrifuges? Yes, many of us would answer the same way.

263
Similar newsletter View all