4
RUDN University Soil Scientist showed how global warming increases the release of greenhouse gases from rice fields

RUDN University Soil Scientist showed how global warming increases the release of greenhouse gases from rice fields

RUDN University Soil Scientist studied the decomposition of organic substances in rice fields, from where carbon dioxide and methane enter the atmosphere. Both of these gases enhance the greenhouse effect and affect warming in subtropical regions. It turned out that the effect of plant roots on soil microbial communities, which increases the release of gases, depends on temperature changes. Climate warming will cause even more greenhouse gases to be released into the atmosphere.

The decomposition of organic matter in the soil is one of the stages in the carbon cycle between plants and the atmosphere. During decomposition, carbon is released into the atmosphere in the form of greenhouse gases - mainly methane and carbon dioxide - which become the main cause of global climate change. The intensity of this process depends, for example, on the ambient temperature or on soil microorganisms. Methane in the soil of rice fields is produced by single-celled archaea organisms, but for this they need intermediate substances that secrete plant roots. Therefore, the activity and number of microorganisms depends on the so-called priming effect - the roots secrete organic substances that ensure the vital activity of microorganisms. A soil scientist from RUDN for the first time found out how priming affects greenhouse gas emissions and how these processes change with global warming.

Soil scientists collected soil samples from rice fields in Hunan Province in southeastern China. The samples were sifted, the visible soil fauna and plant remains were removed, and water was added to simulate the flooded soil of rice fields. Then the samples were kept in plastic containers for 75 days in the dark at different temperatures corresponding to four seasons — 5 °C (winter), 15 °C (spring), 25 °C (autumn) and 35 °C (summer). The aim of the researchers was to measure how the priming effect changes the release of methane and carbon dioxide at different temperatures. In the experiment, soil scientists used sodium acetate, the simplest form of organic carbon produced by plant roots, as an auxiliary substance for archaea.

Soil scientists measured the level of greenhouse gas emissions every 2-5 days. On the 75th day, in soils with priming (with added sodium acetate), the release of methane increased by 153 times compared to samples without acetate. Moreover, the influence of priming depends on the temperature. For a temperature of 15 °C, the sensitivity to warming was the highest — a change in temperature by 10 ° C increases the release of methane by about 25 times. The release of carbon dioxide becomes greater the higher the temperature. Soil scientists explained this by an increase in the activity of microorganisms in warm conditions.

"The priming effect played a decisive role in the sensitivity of the decomposition of soil organic matter to temperature. At 5-15 °C, temperature changes significantly affect methane emissions - they increase by about 25 times. This means, for example, that during warm winters, the release of methane becomes the main cause of the greenhouse effect. Thus, the results of studies that do not take into account the priming effect should be taken with caution," - Doctor of Biological Sciences Yakov Kuzyakov, Head of the Center for Mathematical Modeling and Forecasting of Sustainable Ecosystems of the Agrarian and Technological Institute of the Russian Academy of Sciences.

The results are published in the journal Applied Soil Ecology.

Scientific Conferences View all
16 Oct
The collection consists of two volumes and includes biographical information about Russian demographers and their scientific research. The first volume is devoted to the research of the Pre-Revolutionary period, the second to the works of the Soviet era and the present.
76
Visiting Professors View all
03 Nov 2017
Michele Pagano is a graduate of the University of Pisa, a leading scientist, the author of more than 200 publications in international journals, and a participant in many international research projects
3117
Similar newsletter View all
16 Oct
Green Diplomacy Center opened in RUDN

A Center for Green Diplomacy was created based on the RUDN Institute of Environmental Engineering. Among the goals is the integration of the results of scientific and practical activities into the development of international relations in the environmental sphere. The center's specialists will also accompany the corporate sector in solving various environmental problems.

92
19 Apr
A huge pizza and a jug of water, why should 5G networks be sliced? The winners of RUDN science competition explain

RUDN summarized the results of the scientific competition "Project Start: work of the science club ". Students of the Faculty of Physics, Mathematics and Natural Sciences have created a project for a managed queuing system using a neural network to redistribute resources between 5G segments. How to increase flexibility, make the network fast and inexpensive and reach more users — tell Gebrial Ibram Esam Zekri ("Fundamental Computer Science and Information Technology", Master's degree, II course) and Ksenia Leontieva ("Applied Mathematics and Computer Science", Master's degree, I course).

166
19 Apr
Lyricists and physicists are now on equal terms: the first humanitarian laboratory opened in RUDN

What is your first association with the word “laboratory”? Flasks and beakers? Microscopes and centrifuges? Yes, many of us would answer the same way.

210
Similar newsletter View all