4
The chemist RUDN suggested how to use transition metals in pharmaceuticals

The chemist RUDN suggested how to use transition metals in pharmaceuticals

Chemist RUDN analyzed approaches to the chemistry of catalysts and identified two ways that can give significant development to pharmaceuticals. Flow chemistry and metal catalysts will help to remove the restriction on the use of transition metal complexes in the pharmaceutical industry. This will allow us to develop processes in the fields of fine chemistry that have not been scaled for a century.

Transition metals are elements of secondary subgroups of the periodic table. They can form complex compounds that serve as catalysts and stimulate the flow of chemical reactions to obtain 80% of the compounds needed in industry. However, in more "fine" chemistry, for example, in pharmaceuticals, transition metal complexes are not used, although their diversity could advance this field. The fact is that the stability of most transition metal complexes is limited — metals can be washed out of compounds and contaminate the final product. Chemist RUDN together with colleagues from Spain and Italy identified ways to solve this problem.

"We offer a critical review of the issue both from the industry and technology side, and from the economic side. The findings will help to create innovative catalysts for industry and for research purposes," - Rafael Luque, PhD, Head of the research center "Molecular Design and Synthesis of Innovative Compounds for Medicine" RUDN.

Chemists analyzed the existing methods and came to the conclusion that transition metals can be used in pharmaceuticals due to two directions — flow chemistry and metal catalysts of a new generation. Flow chemistry is a new field in the chemistry of heterogeneous catalysis. In this approach, solid particles of the catalyst are "immobilized", and liquid reagents constantly, as on a conveyor, pass by them and undergo transformations. Regardless of the type of catalyst, the particles — whether atoms, enzymes or transition metal complexes - can be fixed to the substrate. If such a design is stable, then the flow will carry away the reaction products, and the catalyst particles will remain on the carrier and will not pollute the final substances. This will serve the development of industrial applications that have not been scaled up in pharmaceuticals and other fields of fine chemistry for about a century.

Chemists cited the example of Chinese colleagues who used a heterogeneous catalyst in the form of carbon nitride mixed with glass beads in the synthesis of cyclobutanes. They managed to obtain an 81% yield of reaction products at room temperature. In another work, chemists from the UK and India used a heterogeneous catalyst and a flow reactor for the industrial synthesis of enzymes. In this experiment, high productivity was maintained for about 30 hours.

"With the combination of flow chemistry and the latest metal catalysts on the substrate, the situation will change quickly. This approach will be able to become widespread, as well as the use of heterogeneous metal nanoparticles," - Rafael Luque, PhD, head of the scientific center "Molecular Design and Synthesis of innovative compounds for Medicine" RUDN.

The results are published in the journal Green Energy & Environment

International scientific cooperation View all
12 Dec 2024
From 19 to 23 November 2024, RUDN hosted the III International Scientific Conference ‘For the Sustainable Development of Civilisation: Cooperation, Science, Education, Technology’. The event gathered more than 2000 participants from 72 countries.
514
Student's Scientific Initiatives View all
03 Nov 2017
June 22 - 26, 2017 in Barnaul, Altai State University, took place the Summer Academy of the BRICS Youth Assembly, an international event that brought together representatives of different countries
2121
Similar newsletter View all
08 Aug
Focusing on science as a way of life, sustainable development goals as a scientist's mission and new technological developments: RUDN honored leaders in science and innovation

The RUDN University Science and Innovation Prize winners were honoured at the extended meeting of the Academic Council. In 2024 the terms of the traditional RUDN University Prize were changed: for the first time the competition was announced in two categories: leading scientists and young scientists.

148
08 Aug
RUDN University scientist: Africa relies on small modular reactors to solve energy problems

According to the International Energy Agency (IEA), electricity consumption in Africa has increased by more than 100% over the past two years (2020-2022). However, 74.9% of this energy is still produced by burning organic fuels — natural gas, coal and oil. At the same time, the level of electrification on the continent remains extremely low — only 24%, while in other developing countries it reaches 40%. Even in grid-connected areas, electricity supply is often unreliable: industrial enterprises lose energy on an average of 56 days a year.

134
08 Aug
RUDN dentists developed a program that will accelerate the work of an orthodontist by 40%

Today, diagnosis and treatment planning with orthodontists takes several days. Also, complications can arise during treatment that slow down the patient's recovery process. For example, improper orthodontic treatment planning can lead to temporomandibular joint dysfunction.

78
Similar newsletter View all