1
RUDN University engineers named the best machine learning methods for processing radar data

RUDN University engineers named the best machine learning methods for processing radar data

RUDN University engineers compared four machine learning methods used to process radar data. The researchers named the most effective and fastest methods.

Images of the Earth’s surface and other planets are obtained using synthetic aperture radar (SAR). The radar is located on a spacecraft or carrier aircraft. It scans the surface and simultaneously tracks its position. As a result, detailed maps of the surface are obtained, and their quality does not depend on either the weather or the time of day. The most common type of such radars is PolSAR. Machine learning methods are used to process radar data. Due to differences in the operation of algorithms, they work with different accuracy and speed. Therefore, if the algorithm is incorrectly chosen, the calculations are less accurate or require more time for calculations. RUDN University engineers compared the four most popular methods and found out which one is the most effective.

“Classification of PolSAR data is one of the favorite topics in the field of remote sensing. A wide range of algorithms is used for this purpose. The most well — known of these is the SVM support vector method, which is widely used for classifying PolSAR data. However, until now, no research has been conducted on the use of some extended versions of SVM. We compared these methods for classifying PolSAR data”, — Doctor of Technical Sciences Yuri Razumny, Director of the Department of Mechanics and Control Processes of the RUDN Engineering Academy.

RUDN University engineers together with their foreign partners compared four methods: the support vector method (SVM) and three of its modifications — the least squares support vector method (LSSVM), the relevant vector method (RVM), and the vector import method (IVM). Their work was tested on three sets of data obtained from PolSAR: images of the province of Flevoland (Netherlands), the vicinity of the village of Foulum (Denmark) and the city of Winnipeg (Canada). The first and third data sets included extensive agricultural areas. Folum’s images mostly show forests, agricultural fields, and populated areas. The task of machine learning algorithms is to determine how each plot of land is used (where wheat is grown, where the forest grows, where the river flows, and so on). Algorithms were trained on 5%, 10%, 50%, and 90% of the data, and the remaining data was used to test their performance. The effectiveness of the algorithms was evaluated by an indicator varying from 0 to 1, with the unit corresponding to the ideal classification, as well as the time required for learning from the algorithm.

LSSVM turned out to be the fastest-for any amount of training data and for all three regions. For example, for Folum, with 50% of the data allocated for training, LSSVM took less than 0.5 seconds, and the rest of the algorithms took 12-15 times longer. However, SVM proved to be the most effective. It showed the highest training rate for almost all data volumes for Winnipeg and Foulum: 0.78 for Foulum and 0.69 for Winnipeg. In second place in both cases was IVM-0.76 and 0.68, respectively.

“SVM proved to be more efficient, more accurate, and more stable when classifying two of the three data sets. Another conclusion we made is that LSSVM is extremely fast compared to other methods. LSSVM produces comparable accuracy at 12 times faster than SVM and about 15 times faster than RVM and IVM. Therefore, LSSVM can be considered as a worthy modification of SVM with acceptable accuracy and higher speed”, — Javad Hatamiafkuieh, PhD student at the RUDN University Academy of Engineering.

The study is published in the European Journal of Remote Sensing.

Visiting Professors View all
03 Nov 2017
Michele Pagano is a graduate of the University of Pisa, a leading scientist, the author of more than 200 publications in international journals, and a participant in many international research projects
2823
Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
1695
Similar newsletter View all
19 Apr
A huge pizza and a jug of water, why should 5G networks be sliced? The winners of RUDN science competition explain

RUDN summarized the results of the scientific competition "Project Start: work of the science club ". Students of the Faculty of Physics, Mathematics and Natural Sciences have created a project for a managed queuing system using a neural network to redistribute resources between 5G segments. How to increase flexibility, make the network fast and inexpensive and reach more users — tell Gebrial Ibram Esam Zekri ("Fundamental Computer Science and Information Technology", Master's degree, II course) and Ksenia Leontieva ("Applied Mathematics and Computer Science", Master's degree, I course).

15
19 Apr
Lyricists and physicists are now on equal terms: the first humanitarian laboratory opened in RUDN

What is your first association with the word “laboratory”? Flasks and beakers? Microscopes and centrifuges? Yes, many of us would answer the same way.

15
19 Apr
The National Demographic Report 2023 was published with the participation of RUDN. Demographic well-being of Russian regions

The National Demographic Report, 2023 Demographic Well-Being of Russian Regions (hereinafter - the National Demographic Report) was prepared by the scientific team of the Institute of Demographic Studies of the Federal Research Center of the Russian Academy of Sciences, the Vologda Scientific Center of the Russian Academy of Sciences, Peoples' Friendship University of Russia, the Center for Family and Demography of the Academy of Sciences of the Republic of Tatarstan, as well as with the participation of leading scientists from the Republic of Bashkortostan, Stavropol Krai, Volgograd, Ivanovo, Kaliningrad, Nizhny Novgorod, Sverdlovsk Oblasts and Khanty-Mansi Autonomous Okrug–Yugra.

17
Similar newsletter View all