4
RUDN chemists have found an effective catalyst for the synthesis of raw materials of the chemical industry

RUDN chemists have found an effective catalyst for the synthesis of raw materials of the chemical industry

RUDN chemists have proven the effectiveness of metal complexes for catalysis of cyanhydrin production — substances important for the chemical industry. Chemists managed to achieve 96.3% of the reaction efficiency.

Cyanhydrins are organic substances with nitrile and hydroxyl groups that are used in industrial chemistry as raw materials for polymers, acids, alcohols and other compounds. One of the ways to obtain cyanhydrins is the addition of prussic acid to aldehydes. Without catalysts, this reaction is possible, but gives a small yield of the product — about 20%. To create existing catalysts, expensive and dangerous reagents are required, and the reaction itself takes time. RUDN chemists together with colleagues have shown that some metal complexes, the synthesis of which takes place under mild conditions, can be effective catalysts for this process.

“Despite the wide variety of catalytic systems for cyanhydrin production, most of them have significant disadvantages — the use of harmful and expensive components and solvents, long reaction time, low yields, etc. Therefore, the development of a practical catalytic system for the efficient production of cyanhydrins from aldehydes under mild conditions remains a difficult task. We decided to test several relatively easy-to-prepare and inexpensive metal complexes as potential reaction catalysts,” Candidate of Chemical Sciences Evgenia Nikitina, Associate Professor of the Department of Organic Chemistry of the RUDN.

For the experiment, chemists chose four complexes based on cadmium, mercury, zinc and lanthanum. Ligands — ligaments connecting the metal center and lateral branches — in all four cases were the same organic compound. Solvent, aldehyde and trimethylsilyl cyanide were added to the test tube with the catalyst, then the solution was mixed. The course of the reaction was monitored using thin-layer chromatography. After the reaction, the RUDN chemists examined the resulting product using NMR spectroscopy.

The most effective catalyst was a complex with lanthanum. In his presence, the reaction lasted only six hours at room temperature. The output of the final product was close to ideal — 96.3%. Chemists also studied which components of the lanthanum catalyst are responsible for its effectiveness, and came to the conclusion that both non-covalent interactions and donor-acceptor bonds are crucial. The first — weaker — determine the shape and stability of the molecule, the second — stronger — hold its very structure.

“Compared to other coordination catalysts for similar aldehyde conversion, the lanthanum-based catalyst has better performance. The yield of the product is up to 96.3% in six hours at room temperature. Moreover, in previously studied catalytic systems based on metal complexes, additives, a longer reaction time, a larger amount of catalyst and more extreme temperatures are required, while the yield of cyanhydrins is usually lower,” — Candidate of Chemical Sciences Fedor Zubkov, Associate Professor of the Department of Organic Chemistry of the RUDN.

The results are published in the journal Polyhedron.

International scientific cooperation View all
12 Dec 2024
From 19 to 23 November 2024, RUDN hosted the III International Scientific Conference ‘For the Sustainable Development of Civilisation: Cooperation, Science, Education, Technology’. The event gathered more than 2000 participants from 72 countries.
31
Visiting Professors View all
12 Dec 2024
In 2024, RUDN started accepting applications for the new annual Prize for Scientific Achievement in Chemistry. The award was established to honour contributions to fundamental and applied research, as well as merit in achieving the UN Sustainable Development Goals.
28
Similar newsletter View all
16 Oct 2024
Green Diplomacy Center opened in RUDN

A Center for Green Diplomacy was created based on the RUDN Institute of Environmental Engineering. Among the goals is the integration of the results of scientific and practical activities into the development of international relations in the environmental sphere. The center's specialists will also accompany the corporate sector in solving various environmental problems.

160
19 Apr 2024
A huge pizza and a jug of water, why should 5G networks be sliced? The winners of RUDN science competition explain

RUDN summarized the results of the scientific competition "Project Start: work of the science club ". Students of the Faculty of Physics, Mathematics and Natural Sciences have created a project for a managed queuing system using a neural network to redistribute resources between 5G segments. How to increase flexibility, make the network fast and inexpensive and reach more users — tell Gebrial Ibram Esam Zekri ("Fundamental Computer Science and Information Technology", Master's degree, II course) and Ksenia Leontieva ("Applied Mathematics and Computer Science", Master's degree, I course).

206
19 Apr 2024
Lyricists and physicists are now on equal terms: the first humanitarian laboratory opened in RUDN

What is your first association with the word “laboratory”? Flasks and beakers? Microscopes and centrifuges? Yes, many of us would answer the same way.

263
Similar newsletter View all