4
RUDN University environmentalist has created a reusable "nano-sponge" for wastewater treatment

RUDN University environmentalist has created a reusable "nano-sponge" for wastewater treatment

A RUDN University ecologist, together with colleagues from Korea and India, has created a reusable “nano-sponge” that can absorb harmful compounds from wastewater. Moreover, it works simultaneously for organic and inorganic pollutants.

The discharge of organic and inorganic waste into wastewater is a serious threat to the environment and human health. Moreover, the combined effect of several pollutants may be stronger than their total harm. Therefore, tools are needed that would allow to get rid of several types of harmful substances at once. Existing solutions are mainly aimed at removing only organic or only inorganic compounds. A RUDN ecologist, together with colleagues from Korea and India, created a hybrid compound based on graphene and chitosan, which allows you to simultaneously remove inorganic (for example, mercury and copper) and organic (for example, methylene blue and crystal violet) pollutants from wastewater.

“Adsorbents are used to remove one chemical or several chemicals belonging to the same chemical class. However, such success has not been achieved in the removal of pollutants of different classes using adsorption. Researchers are faced with low adsorption rates and removal efficiencies. Therefore, it is necessary to synthesize a new adsorbent, since adsorption technology is needed in the future to remove several types of pollutants from wastewater,” Vinod Kumar, PhD, professor at RUDN University.

Ecologists have created a nanocomposite based on graphene oxide (a flat modification of graphite) and chitosan (a polysaccharide obtained from animal and fungal chitin). Ethylenediaminetetraacetic acid adds chemical activity to the new compound; it introduces functional groups into the nanocomposite, which determine its activity as an adsorbent. The structure and properties of the nanocomposite were determined by ecologists using X-ray diffraction, infrared spectroscopy, and other methods. Then the ecologists experimentally studied the adsorption activity of the nanocomposite.

One gram of the substance was able to absorb up to 324 mg of mercury, 130 mg of copper, 141 mg of methylene blue and 121 mg of crystal violet. Ecologists explained such a significant capacity by the fact that the nanocomposite contains many functional groups. Moreover, the “nano-sponge” can be washed and used again — after seven cycles of soaking and rinsing, the absorption efficiency has decreased by no more than 10%.

“Even in the presence of foreign metal ions, target metal ions are successfully adsorbed. Moreover, other metals are also well removed. The adsorbent also remained effective for several metal ions and dyes simultaneously. The created nanocomposite can retain its adsorption capacity for both inorganic and organic pollutants even after seven adsorption-desorption cycles. All this indicates that it can be promising in the treatment of a complex mixture of wastewater containing inorganic and organic pollutants,” Vinod Kumar, PhD, professor at RUDN University.

The results are published in the journal Chemosphere.

Student's Scientific Initiatives View all
03 Nov 2017
June 22 - 26, 2017 in Barnaul, Altai State University, took place the Summer Academy of the BRICS Youth Assembly, an international event that brought together representatives of different countries
2112
Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
2254
Similar newsletter View all
08 Aug
Focusing on science as a way of life, sustainable development goals as a scientist's mission and new technological developments: RUDN honored leaders in science and innovation

The RUDN University Science and Innovation Prize winners were honoured at the extended meeting of the Academic Council. In 2024 the terms of the traditional RUDN University Prize were changed: for the first time the competition was announced in two categories: leading scientists and young scientists.

97
08 Aug
RUDN University scientist: Africa relies on small modular reactors to solve energy problems

According to the International Energy Agency (IEA), electricity consumption in Africa has increased by more than 100% over the past two years (2020-2022). However, 74.9% of this energy is still produced by burning organic fuels — natural gas, coal and oil. At the same time, the level of electrification on the continent remains extremely low — only 24%, while in other developing countries it reaches 40%. Even in grid-connected areas, electricity supply is often unreliable: industrial enterprises lose energy on an average of 56 days a year.

89
08 Aug
RUDN dentists developed a program that will accelerate the work of an orthodontist by 40%

Today, diagnosis and treatment planning with orthodontists takes several days. Also, complications can arise during treatment that slow down the patient's recovery process. For example, improper orthodontic treatment planning can lead to temporomandibular joint dysfunction.

60
Similar newsletter View all