Research Projects
The project is devoted to the development of new qualitative and geometric methods for the study of boundary value problems for differential and functional differential equations, their application to the Vlasov equations (kinetics of high-temperature plasma), the Kato problem of the square root of the operator, mathematical biology and mathematical medicine.
To study linear elliptic differential-difference equations, symmetrized matrices corresponding to difference operators are used, while the skew-symmetric component does not violate the strong ellipticity of the linear operator and the smoothness properties of generalized solutions. Previously, the solvability criteria for nonlinear elliptic differential-difference equations were proposed, in which the difference operators are described by symmetric matrices. It was shown that, unlike the linear case for nonlinear problems, the skew-symmetric part affects ellipticity. In this project, we propose to use previously developed methods to study nonlinear elliptic problems with difference operators, which correspond to triangular matrices.