St. Gallen, Switzerland
Research Centre
Parametric models of the geometry of the lymph node were developed. Models were developed and topological properties of a network of fibroblastic reticular cells were analyzed. The features of lymph flow in the network of lymph node conduits were studied.
Lyon, France
University
Joint research work with C. Dumontet, P. Nony. Mathematical modeling of variousdiseases: leukaemia, lymphoma, lymphodema, mucoviscidosis, thrombosis. Simulation of clinical trials.
Barcelona, Spain
University
Joint research work with A. Meyerhans. The study of the spread of viral infection in body tissues on the basis of reaction-diffusion and hybrid discrete-continuous models of immune response.
Nashville, USA
University
Joint research work with M. Koury. The mathematical model was developed, computer calculations and comparisons with experimental data of erythropoiesis functioning on the basis of erythroblastic islands were carried out. The development of multiple myeloma and its effect on erythropoiesis were investigated. Various treatment protocols of patients were modeled and compared with clinical data.
Uppsala, Sweden
University
Joint research work with A. Bouchnita. Mathematical models and computer programs for describing the coagulation of blood in the stream considering biochemical reactions in the plasma and aggregation of platelets were developed. The terms of normal clot growth and thrombosis were obtained. Two articles are in print this year.
Praga, Czech Republic
Research Institute
- Publication of joint works in high-rated journals.
Necessary and sufficient terms for the boundedness of fractional maximal operators in general Morrie local spaces are for a wide class of admissible values of numerical parameters were obtained together with A. Gogatishvili. Sufficient and necessary terms for this kind of limitation for a certain range of parameters were obtained.
Ramat-Gan, Israel
University
- Publication of joint works in high-rated journals.
The terms that ensure the boundedness of Hausdorff operators in Morrie spaces were obtained together with E. Liflyand. The classes of Hausdorff operators for which the necessary and sufficient terms of boundedness coincide were described.
Baku, Azerbaijan
Research Institute
- Publication of joint works in high-rated journals.
Field of cooperation: theory of operators in Morrie type spaces.
Padova, Italy
University
- Publication of joint works in high-rated journals.
Accurate stability evaluation for the variation of eigenvalues of nonnegative selfadjoint elliptic operators of arbitrary even order when changing the open sets on which they are defined were obtain with P. D. Lamberti, M. Lanza de Cristoforis, Feleqi E. This evaluation is expressed in terms of Lebesgue measure of the symmetric difference of open sets. The boundary terms of Dirichlet and Neumann were analyzed.
Field of cooperation: spectral theory.
Hannover, Germany
University
- Publication of joint papers in high-rated journals
Mathematicians of RUDN University (Professor B. Yu. Sternin, Professor A. Y. Savin) with mathematicians of the University of Hannover (Prof. Dr. Elmar Schrohe) analyze actual problems of elliptic theory and noncommutative geometry in joint scientific works. In particular, an explicit uniformization for elliptic operators associated with groups of shift operators was found out. The terms for the Fredholm property of the operators associated with groups of quantized canonical transformations were obtained.
A.Yu. Savin, B.Yu. Sternin, E. Schrohe, “Index problem for elliptic operators associated with a diffeomorphism of a manifold and uniformization”, Proceedings of the Russian Higher School Academy of Sciences, 441:5 (2011), 593–596; A.Yu. Savin, B.Yu. Sternin, E. Schrohe, “Index problem for elliptic operators associated with a diffeomorphism of a manifold and uniformization”, Dokl. Math., 84:3 (2011), 846-849
A.Yu. Savin, B.Yu. Sternin, E. Schrohe, “On the Index Formula for an Isometric Diffeomorphism”, Journal of Mathematical Sciences, 201:6 (2014), 818–829
A.Yu. Savin, E. Schrohe, B. Sternin, “Uniformization and Index of Elliptic Operators Associated with Diffeomorphisms of a Manifold”, Russian Journal of Mathematical Physics, 22:3 (2015), “410–420”