Seminar on nonlinear problems of PDE and mathematical physics on topic “Properties of solutions of degenerate parabolic equations with an inhomogeneous density”

Seminar on nonlinear problems of PDE and mathematical physics on topic “Properties of solutions of degenerate parabolic equations with an inhomogeneous density”

The event passed
19 May 2020
Location
Online
About the event

Speaker: D.Sc., professor Tedeev A. F. (Vladikavkaz Scientific Center of the RAS, Southern Mathematical Institute-branch of VSC ,Vladikavkaz). 

Title of the talk: Properties of solutions of degenerate parabolic equations with an inhomogeneous density. 

The qualitative properties of solutions of parabolic equations with double non-linearity and with an inhomogeneous density are investigated. Under certain conditions of the decrease of the density function at infinity the following properties of the solutions of the Cauchy problem are established: 

  1. Optimal estimates in time of the solution 
  2. The sharp bound of the radius of support of the solution 
  3. The interface blow-up in finite time phenomena 
  4. Universal bound in time estimates of solutions 

The first results of a qualitative study of the solution of the Cauchy problem for the equation of a porous medium with an inhomogeneous density were obtained in the works of S. Kamin, F. Rosenau in 1982-1983. In these works, non-standard properties of the solution were established with a sufficiently rapid decrease density at infinity. In 1993, the work of S. Kamin, R. Kersner was the first to establish the phenomenon of the interface blow-up with a certain density behavior at infinity

Online

Related eventsAll events
2023
30 Mar
Webinar “Waste Management. Circular Economy in Africa”
2023
29 Mar
International Scientific Seminar “ESG in the realities of today’s world”
2023
28 Mar
Lection “Philosophy of language and intercultural communication, translation”
2023
28 Mar
Scientific seminar on the differential and functional differential equation “Non-radiality of the second eigenfunction of the fractional Laplace in the ball”