A chemist from RUDN came up with a new catalyst for fuel synthesis

A chemist from RUDN came up with a new catalyst for fuel synthesis

RUDN chemist synthesized a fundamentally new catalyst for formic acid photo‑oxidation, which is considered to be the most perspective source of hydrogen for fuel elements. A catalyst based on titanium amorphous oxide is a new instrument for formic acid conversion. In the future, it will allow to abandon traditional costly catalysts based on palladium, platinum, and ruthenium.

Hydrogen energetics development is not possible without methods of hydrogen secure storage and generation. Formic acid is a non-toxic and highly stable source of hydrogen. Н2 and СО2 are obtained by decomposition of acid under light irradiation on catalysts’NPs, the role of which is fulfilled by platinum, palladium, and other costly metals compounds. Chemists decided to test what the products of formic acid photo‑oxidation will be obtained if the cheaper layered amorphous oxide of titanium is used as a catalyst.

Professor Rafael Luque, United Institute of Chemical Research RUDN and his colleagues from Iran, Spain, China, and South Korea synthesized a catalyst — titanium amorphous oxide based on organic-silicate matrix. At the beginning the chemists obtained mesoporous (2-50 nm) matrix material, where bridging dimeric groups of organic viologen compound presented. Later the precursor — titanium butoxide was loaded, followed by matrix drying at 60 о С and its transformation into amorphous titanium oxide.

The chemists performed the reaction of formic acid oxidation in different conditions: different temperature regimes (from 25 to 60о С) and different quantity of catalyst from amorphous titanium oxide (from 5 to 20 mg), with different solvents (water, ethanol, methanol, and others). The results of experiments showed that the quickest reaction proceeds under UV radiation, in water and at room temperature, providing only CО2 and Н2О. Neither hydrogen, nor carbon monoxide, which poison any photo‑oxidation catalyst, were identified in products. Such products formation is due to the catalyst’s non-crystalline structure. In their work the authors came up with the photo-oxidation mechanism and specified basic stages.

The authors also found out that viologens improve the quality of catalyst, because it generates electron-proton vapors in photocatalysis, thus extending the lifetime of the catalyst. The catalyst can be easily reprocessed and reused at least in four cycles without noticeable ageing.

The scientists made an input in fundamental chemistry development, having investigated a new mechanism of formic acid formation. The results of the present research will allow to minimize risks and expenditures in common use of this type of catalyst in future development.

The article is published in the journal ChemCatChem.

News
All news
Science
15 Jun
Heavy Metals Make Soil Enzymes 3 Times Weaker, Says a Soil Scientist from RUDN University

Heavy metals suppress enzyme activity in the soil by 3-3.5 times and have especially prominent effect on the enzymes that support carbon and sulfur circulation. This was discovered by a soil scientist from RUDN together with his colleagues from Chile, Germany, the UK and Venezuela. The data obtained by the team can lead to more efficient use and fertilization of agricultural lands.

Science
09 Jun
Multilingual Education during COVID-19: University Teachers from Several Continents and 18 Countries Explored Common and Specific Features of Remote Training

The RUDN University Academic Council Commission on Foreign Languages held its June research seminar in cooperation with international community of language teachers who became part of the international pro-bono project on challenges and solutions to foreign languages training during COVID-19.

Science
07 Jun
RUDN University Biologists Studied the Effect of Jungles on Global Warming

Biologists from RUDN University described the role of tropical rainforests in the production of methane, the second most harmful greenhouse gas after CO2. It turned out that some areas of rainforests not only consumed methane but also emitted it.