A RUDN University chemist created anti-tumour compounds that are up to 80 times more effective than their counterparts

A RUDN University chemist created anti-tumour compounds that are up to 80 times more effective than their counterparts

A chemist from RUDN University has created platinum complex compounds that are superior in activity to cisplatin, the drug for the treatment of tumour diseases. The new compounds turned out to be also less toxic to healthy cells.

Platinum-based anticancer drugs — cisplatin, oxaliplatin, and carboplatin — are used for chemotherapy in about half of cancer cases. They penetrate cells and interact with DNA molecules. The process is fatal for rapidly dividing cancer cells because the drugs prevent the duplication of DNA molecules, which is necessary for successful division. Since cancer cells divide rapidly, they are the first to be affected. Still, platinum derivatives have certain disadvantages: low stability under physiological conditions and high toxicity.

To create new drugs, a strategy that involves the development of hybrid molecules is often used in modern chemistry. Such substances consist of two or more active fragments that are linked by a linker into one molecule. They usually have a double action, characteristic of each of the fragments.

A chemist from RUDN University, candidate of biological sciences Kirill Kirsanov, created a series of new drugs: hybrids of cisplatin, lonidamine, and bexarotene. Lonidamine itself has an anti-tumour effect due to its ability to suppress energy metabolism in cancer cells. In combination with radiation therapy, it is used to treat brain tumours. Bexarotene is used for the treatment of lung cancer and breast cancer, as it inhibits the growth of tumour cells of hematopoietic and squamous origin.

A derivative of cisplatin with bexarotene turned out to be the most promising. A combination of succinic acid and ethylenediamine was used as a linker. In tests conducted on four tumour cell lines, the hybrid drug was 80 times more active than bexaroten and 20 times higher on average than cisplatin, and the new drug was 80 times more active than cisplatin on MCF7D cell line. Based on the resulting leading compound, new and more effective anti-tumour medications can be developed.

The paper was published in the journal Inorganica Chimica Acta.

News
All news
Science
22 Oct
A Chemist from RUDN University Developed a New Method for Combating Antibiotic Resistance in Microbes

Bacteria in biofilms are 1,000 times more resistant to antibiotics, disinfectants, mechanical treatment, and other types of stress. A chemist from RUDN University suggested a method to prevent the formation of biofilms and reduce the resistance of bacteria to antimicrobial medications. This might help increase the efficiency of antibacterial treatment in the food industry, medicine, and agriculture.

Science
20 Oct
RUDN University Professor Suggested how to Clean Up Space Debris

A specialist in spacecraft movement control analyzed the process of placing vehicle stages, boosters, and other space debris into the so-called disposal orbit and suggested cleaning lower orbits up with a spacecraft that has modules with engine units on board. These modules will attach to space debris objects and move them away. As for the geostationary orbit, a preferable way to clean it up would be a towing spacecraft that transports space debris objects into the disposal orbit.

Science
14 Oct
A Biologist from RUDN University Found Sex Differences in Inflammatory Reactions in Rat Pups

A biologist from RUDN University studied the development of the immune response in prepubertal male and female animals. According to her, the severity and mortality of infectious and inflammatory diseases at this age depend not on the sex hormones, but mainly on the chromosome set or karyotype.