RUDN Biochemists Discovered an Enzyme to Stop Cell Death

RUDN Biochemists Discovered an Enzyme to Stop Cell Death

RUDN biochemists found out that apoptosis (programmed cell death) can be regulated using the EndoG enzyme. The discovery will lead to better understanding of cell and tissue protection mechanisms. The results of the study were published in the Biochimie journal.

Defective (e.g.infected or mechanically damaged) cells are destroyed by apoptosis - regulated cell death. Due to it the cells are constantly updated. Up to 70 billion cells are destroyed by apoptosis in a healthy human body every day. If the process changes (speeds up or slows down), it leads to oncological, autoimmune, neurodegenerative, and other disorders.

There are several enzymes called apoptotic endonucleases that participate in the programmed cell death. RUDN biochemists demonstrated that one of them named EndoG can stop the cell death process if it goes out of control. It turned out that increased EndoG secretion reduces the volumes of another endonuclease called DNase I and slows down the process of apoptosis on its early stage. Previously the two enzymes were supposed to work together, i.e. to mutually affect the DNA of a defective cell to destroy it. RUDN biochemists were the first to demonstrate that EndoG and DNase I were in fact more competitors than comrades.

“The EndoG enzyme acts as a protective mechanism against DNase I and DNA destruction. In this case the mechanism of cell death turns out to be very interesting: EndoG, the enzyme that destroys DNA, is able to stop apoptosis if it goes too far or too fast”, said Dmitry Zhdanov, a co-author of the work, a Candidate of Biology, and an Assistant Professor of Berezov Department of Biochemistry at RUDN.

To carry out the experimental research, RUDN biochemists used the blood of 50 people from 18 to 25 years of age without any diagnosed diseases. The scientists induced the increase of EndoG synthesis in T-lymphocytes of the donors. Then using a DNA-destroying substance called bleomycin the scientists initiated the process of apoptosis in the cells and measured the levels of EndoG and DNAse I. It turned out that the excess of EndoG reduced the level of DNAse I and therefore slowed down the whole process of apoptosis.

“We were the first to demonstrate the negative correlation between EndoG and DNAse I. This discovery may help fine-tune the response of a cell to any damage, and the activation of EndoG may become a protective mechanism against uncontrolled cell death”, added Zhdanov.

The participants of the study also represented Orekhovich Science and Training Institute for Biomedical Chemistry and Blokhin National Medical Research Center of Oncology.

All news
27 Jun
RUDN Mathematicians: 5G will cope with traffic when using WiGig

RUDN mathematicians investigated the possibility of combining 5 GNR technology and WiGig — a high-frequency range that allows you to transfer data at speeds up to 10 Gbps. This will smooth traffic fluctuations in 5Gnetworks and cope with user requests.

23 Jun
Scientists Reveal the Water Column of the Yamal Lakes Can Be a Microbial Filter

Scientists from the Winogradsky Institute of Microbiology RAS, RUDN University, St. Petersburg State University and the Tyumen Scientific Centre SB RAS studied the microbial communities from several lakes of the Yamal Peninsula. It turned out that methanotrophs (bacteria that use methane as a source of energy) consume methane more actively in the deep mature lakes of the peninsula than in small thermokarst lakes. In this regard, methane emissions into the atmosphere from the surface of deep lakes are low, and only small (relatively younger thermokarst lakes with constitutional ground ice) can make a significant contribution to methane emissions in the north of Western Siberia. Thus, bacteria perform an important function for the climate balance — they reduce the emission of methane into the atmosphere.

20 Jun
RUDN University Physicists Determine the Optimal Conditions for Holding High-Energy Plasma Clouds in Pyrotron

RUDN University physicists have described the conditions for the most efficient operation of long mirror-based variant of cyclotron in the autoresonance mode. These data will bring better understanding of plasma processes in magnetic traps.