RUDN University chemist discovered a way to quadruple the speed of toluene photooxidation

RUDN University chemist discovered a way to quadruple the speed of toluene photooxidation

A chemist from RUDN University has proposed a new way to control toluene photooxidation using composite catalysts — artificial diamond and titanium dioxide. The discovery refutes the previously existing physical hypothesis about the process of photooxidation of toluene.

Toluene is a combustible liquid that is extracted from gasoline fractions of oil for the production of paint materials, chemicals, solvents, and aviation fuel. Benzaldehyde and carbon dioxide are produced during the photooxidation of toluene. Benzaldehyde is used to produce benzoic acid, an important element in the production of food preservatives, medicines, and chemical raw materials. However, the widespread industrial photooxidation of toluene with oxygen into benzoic acid is a slow process. RUDN University chemist proposed a new way to control the photooxidation of toluene using catalysts g-C3N4/TiO2 and manganese (Mn), increasing the reaction rate 4.3 times and increasing the efficiency of benzaldehyde production.

Rafael Luque from the Research Institute of Chemistry of RUDN University notes that only benzaldehyde and carbon dioxide are found as reaction products for all solids without significant differences between composite samples. And their reference catalyst based on titanium dioxide is highly active and converts the partial oxidation product mainly into benzaldehyde, increasing the efficiency of the reaction.

The chemists conducted a combination of adsorption and kinetic studies. They developed evidence that the reaction occurs by a hydroxyl-mediated mechanism – it means that the increase in the activity of the elements depends on changes in the rate of formation of hydroxyl particles that are present on the surface of solids.

Scientists have found that the reaction rate is quantitatively related to the rate of production of hydroxyl particles, which interact with toluene affect the process of photooxidation. This means that regulating the contact between the components allows controlling the rate of photoactivity.

Scientists found that the new catalysts increase the reaction rate of toluene photooxidation by about 2.5 times, and the addition of manganese to the carbon nitride component shows a further increase in the reaction activity by 1.8 times. That is, the contact between the components of the composite catalyst g-C3N4/TiO2 significantly improves the photooxidation of toluene, and manganese enhances such a beneficial effect.

Thus, chemists have found that the contact between the components allows you to control the rate of photoactivity by slowing or accelerating the process of photooxidation of toluene. The authors of the study report that the findings refute the previously existing hypothesis in the scientific literature about the nature of the photooxidation process.

Rafael Luque, Director of the Scientific Center of the Research Institute of Chemistry of RUDN University, conducted research in collaboration with colleagues from leading institutions in Spain (universities of Madrid, Granada, Cordoba).

The article is published in the Chemical Engineering Journal.

All news
22 Oct
A Chemist from RUDN University Developed a New Method for Combating Antibiotic Resistance in Microbes

Bacteria in biofilms are 1,000 times more resistant to antibiotics, disinfectants, mechanical treatment, and other types of stress. A chemist from RUDN University suggested a method to prevent the formation of biofilms and reduce the resistance of bacteria to antimicrobial medications. This might help increase the efficiency of antibacterial treatment in the food industry, medicine, and agriculture.

20 Oct
RUDN University Professor Suggested how to Clean Up Space Debris

A specialist in spacecraft movement control analyzed the process of placing vehicle stages, boosters, and other space debris into the so-called disposal orbit and suggested cleaning lower orbits up with a spacecraft that has modules with engine units on board. These modules will attach to space debris objects and move them away. As for the geostationary orbit, a preferable way to clean it up would be a towing spacecraft that transports space debris objects into the disposal orbit.

14 Oct
A Biologist from RUDN University Found Sex Differences in Inflammatory Reactions in Rat Pups

A biologist from RUDN University studied the development of the immune response in prepubertal male and female animals. According to her, the severity and mortality of infectious and inflammatory diseases at this age depend not on the sex hormones, but mainly on the chromosome set or karyotype.