RUDN University chemists discovered the mechanism of radiation instability of lithium tetraborate

RUDN University chemists discovered the mechanism of radiation instability of lithium tetraborate

Chemists from RUDN University have studied the mechanism of radiation instability of thermoluminophores based on lithium tetraborate, which are used for the manufacture of radiation dosimeters. They found that the properties of the materials are deteriorating due to the breakdown of chemical bonds in the boron-oxygen network and the formation of clusters of manganese, which is part of the substances.

Lithium tetraborate was the first material thermoluminescent radiation dosimeters, which were highly sensitive to x-ray, gamma, and beta radiation, were made of. When ionising radiation enters a thermoluminescent dosimeter, the latter “stores” the absorbed energy due to the transfer of electrons to higher energy levels. When heated above a certain temperature, the electrons emit previously absorbed energy, and the dosimeter begins to glow. The light intensity is proportional to the amount of absorbed radiation. In order to make lithium tetraborate capable of this, impurities of manganese, silver, or other metals are introduced into it, which act as traps for those electrons that were excited by ionising radiation. But because of these impurities, the radiation resistance of the substance decreases. It has not been known why, until now.

RUDN University chemist Alexander Zubov and his colleagues compared ceramic samples based on lithium tetraborate with impurities of manganese, copper, zinc, tin, and beryllium. It turned out that the radiation stability of the substance is deteriorating due to the rupture of chemical bonds in the boron-oxygen network. And while the boron-oxygen lattice in a pure substance is capable of restoring itself during heating, the introduction of manganese interferes with this process.

The more evenly manganese is distributed in the structure of lithium tetraborate, the less negative impact it has on the radiation stability of the material is. Copper and tin prevent the clustering of manganese, forming bound complexes with it, thereby preventing it from “migrating” and “sticking” to the crystal lattice during recharging of the dosimeter. Moreover, ceramics with addition of tin, unlike of copper, also has thermoluminescent properties that allow its effective use in dosimetry.

Understanding of the physicochemical processes that occur during irradiation of a material is necessary to create new radiation resistant materials. The RUDN University chemists were able not only to explain the mechanism of radiation destruction of lithium tetraborate, but also to apply the new knowledge to create a material with a better composition, which can later be used in advanced pocket radiation dosimeters. In addition, the authors argue that their experimental approach, which involves searching for clustered manganese in the structure of lithium tetraborate, can be used as a new effective way to certify the radiation resistance of thermoluminescent dosimeters.

The work was published in the journal Radiation Measurements.

All news
22 Oct
A Chemist from RUDN University Developed a New Method for Combating Antibiotic Resistance in Microbes

Bacteria in biofilms are 1,000 times more resistant to antibiotics, disinfectants, mechanical treatment, and other types of stress. A chemist from RUDN University suggested a method to prevent the formation of biofilms and reduce the resistance of bacteria to antimicrobial medications. This might help increase the efficiency of antibacterial treatment in the food industry, medicine, and agriculture.

20 Oct
RUDN University Professor Suggested how to Clean Up Space Debris

A specialist in spacecraft movement control analyzed the process of placing vehicle stages, boosters, and other space debris into the so-called disposal orbit and suggested cleaning lower orbits up with a spacecraft that has modules with engine units on board. These modules will attach to space debris objects and move them away. As for the geostationary orbit, a preferable way to clean it up would be a towing spacecraft that transports space debris objects into the disposal orbit.

14 Oct
A Biologist from RUDN University Found Sex Differences in Inflammatory Reactions in Rat Pups

A biologist from RUDN University studied the development of the immune response in prepubertal male and female animals. According to her, the severity and mortality of infectious and inflammatory diseases at this age depend not on the sex hormones, but mainly on the chromosome set or karyotype.