Scientists created a tool for targeted drug delivery to tumor

Scientists created a tool for targeted drug delivery to tumor

RUDN University and Shahid Beheshti University (SBU) chemist together with colleagues from Iran created a system for targeted delivery of anti-cancer drugs. The complex based on graphene and gelatin using green chemistry methods. In future, it can help to avoid side effects during cancer chemotherapy.

One of the methods of cancer treatment is chemotherapy. Cytostatic drugs are usually administered intravenously, they help to minimize the growth of the tumor, but at the same time they put a serious strain on the body and cause side effects. Targeted drug delivery systems help improve the effectiveness of treatment and reduce side effects. However, there is no exact targeted delivery method yet. RUDN University chemists, together with colleagues from Iran, have proposed a hydrogel compound made of graphene and gelatin that can potentially deliver the anti-cancer drug doxorubicin to a tumor.

“It is important to introduce an alternative vehicle that can deliver anticancer drugs effectively in the targeted tumor tissue. Based on our previous findings in modification/functionalization of materials via multicomponent reactions we report a green, straightforward, and efficient novel method to prepare GQD-G hydrogel, which can be used as an implantable antitumor agent,” said Ahmad Shaabani, a leading researcher at the Joint Institute for Chemical Research of RUDN and SBU.

Chemists have created a hydrogel that can hold a drug and slowly release it as it dissolves. The GQD-G hydrogel consists of gelatin and graphene-based quantum dots. Quantum dots are semiconductor particles with electrons “trapped” in it. They were obtained by pyrolysis of citric acid. The solution with quantum dots was combined with gelatin and excipients (bromobenzaldehyde and cyclohexyl isocyanide) to form a hydrogel, a “vehicle” for the drug. Then they injected doxorubicin in it (a common drug used in cancer chemotherapy). Cytotoxicity of the drug was studied on breast cancer cells.

Within 100 hours, up to 25-70% of doxorubicin is released from the hydrogel compound, depending on the acidity of the environment and the concentration of auxiliary bromobenzaldehyde in the hydrogel. The ability to kill cancer cells in this compound was lower than that of pure doxorubicin, but the hydrogel complex provides another advantage. One can control the rate of drug release and reduce side effects, since the hydrogel with the drug can be injected directly into the desired tissue.

“The designed hydrogels may attract great attention to construct a safe system, having the potential to be employed as an implantable anticancer and bio-detection agent. In addition, we believe that the presented strategy could attract much attention from the community of material chemistry for the preparation of biomedical platforms thanks to its green chemistry principle,” said Ahmad Shaabani, a leading researcher at the Joint Institute for Chemical Research of RUDN and SBU.

The results are published in the journal Materialia.

News
All news
Science
23 Oct 2024
RUDN University Space Week 2024: Outcomes

On October 7–10, 2024 RUDN University Space Week traditionally took place. This event was dedicated to the World Space Week, which is celebrated annually in accordance with the UN General Assembly Resolution 54/68 (December 6, 1999) from October 4 to 10 to commemorate the launch of the first artificial satellite Sputnik-1 on October 4, 1957, and the signing of the Outer Space Treaty on October 10, 1967 – the fundamental international treaty in the field of international space law.

Science
18 Jan 2024
RUDN University agronomist found wheat genetically resistant to fungus

A RUDN agrotechnologist has identified wheat genotypes that are resistant to a dangerous fungal pathogen that infects plants even before the snow melts and reduces yields.

Science
10 Jan 2024
RUDN Engineers Have Calculated the Parameters of the Heat Rejection System for a Lunar Power Plant

RUDN University engineers have calculated the parameters of a system that can prevent lunar power plants from overheating. These developments will be needed when planning for long-term lunar missions and colonizing the satellite.