2
Chemist from RUDN University together with colleagues from the institutes of the Russian Academy of Sciences simplified the synthesis of antitumor compounds

Chemist from RUDN University together with colleagues from the institutes of the Russian Academy of Sciences simplified the synthesis of antitumor compounds

Chemist from RUDN University in collaboration with colleagues from the Institute of organic chemistry named after N. D. Zelinsky and the Institute of developmental biology named after N. K. Koltsova RAS has developed a new method for the synthesis of isoxazole derivatives-substances that destabilize the process of cell division and in the future may become the basis for new anti-cancer drugs. The new method is based on the use of readily available reagents and does not require high temperatures.

Many modern anti-cancer drugs are toxic, difficult to access, and/or very expensive. In addition, tumor cells can develop resistance to the drugs used. Therefore, researchers are studying the biological properties of molecules to obtain new anti-cancer drugs with optimal properties. One of the most common approaches to searching for such drugs is testing analogs of substances with already proven antitumor activity. These substances include, in particular, isoxazole derivatives that inhibit — “turn off” — the hsp90 protein necessary for the survival of tumor cells. However, compounds of this class are not readily available due to the complexity of the synthesis procedure, which requires, in particular, the complete absence of water molecules, and reagents are expensive and toxic.

Viktor Khrustalev, a chemist from RUDN University, and his colleagues have developed a method for synthesizing isomers of these substances, that is, compounds that are identical in atomic composition, but differ in the arrangement of atoms in space. As raw materials, readily available derivatives of aryl nitromethanes and chloroacetamides were used, and the reaction itself was carried out at temperatures of no more than 80 degrees at atmospheric pressure and did not require anhydrous conditions.

The resulting substances had anti-cancer activity, but unlike the prototype compounds, they do not inhibit the Hsp90 protein. Their mechanism of action is based on the destabilization of the cell division process — they prevent the formation of microtubules, which are necessary in the process of cell division.

The same mechanism of action has Taxol derivatives — one of the most commonly used antitumor agents. Based on the compounds obtained by scientists, a replacement for expensive, poorly available and highly toxic Taxol derivatives in the treatment of cancer can be created.

Article in the European Journal of Organic Chemistry.

Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
1461
Student's Scientific Initiatives View all
03 Nov 2017
June 22 - 26, 2017 in Barnaul, Altai State University, took place the Summer Academy of the BRICS Youth Assembly, an international event that brought together representatives of different countries
1329
Similar newsletter View all
26 Dec 2022
Tissue architecture, cell organization, biomedical products: RUDN University opens a new research and educational resource center

On October 4, the Research and Educational Resource Center (REC) of innovative technologies of immunophenotyping, digital spatial profiling and ultrastructural analysis (molecular morphology) opened at the RUDN.

80
26 Dec 2022
RUDN scientists suggested how to help the soils of Zaryadye Park

RUDN University scientists conducted a comprehensive soil and environmental survey and took more than 80 soil samples in Zaryadye Park. An assessment of the physicochemical, microbiological, and ecotoxicological properties of soils made it possible to develop recommendations and a plan for the care of soils in analogous landscapes in the park.

109
26 Dec 2022
RUDN University Chemist Creates Nanofilter to Clean Water from Toxic Dyes

RUDN University chemist with colleagues from India and Korea created a nanofilter for water purification from synthetic dyes. The graphene-based composite can quickly remove up to 100% of harmful compounds from water, and it can be used up to seven times without losing efficiency. In addition, the synthesis of the nanofilter itself is economical and environmentally friendly.

71
Similar newsletter View all