2
RUDN University biologist developed new model for analyzing photosynthesis in vivo

RUDN University biologist developed new model for analyzing photosynthesis in vivo

A RUDN University biologist has developed a model for the analysis of photosynthesis in vivo. This method allows you to calculate the absorption coefficient of light by chlorophyll, based on its reflectivity. Analysis of light absorption is important for assessing ecosystem productivity, which affects the state of the biosphere and the global climate.

Measurements of the efficiency of photosynthesis in living systems are necessary because they allow us to estimate the carbon cycle, and therefore the impact on the climate. To study photosynthesis in vivo, the vegetation absorption coefficient is used – a value that shows how deep the incident radiation penetrates the canopy. It depends on biochemical, structural and external factors, so its evaluation is very difficult. Alexei Solovchenko, an employee of RUDN University, and his colleagues from the USA and Israel have found a new way to assess this indicator.

First, biologists calculated the ratio of absorption and transmission coefficients for individual leaves and canopy in general. Measuring these coefficients for the canopy “in sum” is difficult, but for a single leaf it is simple, so knowing the ratio between them, you can calculate the absorption and transmission of canopy, knowing the coefficients for a single leaf. Then the researchers of RUDN University obtained an equation that connects the canopy absorption coefficient to the pigments absorption coefficient – primarily chlorophyll – in leaves. It turned out that the canopy, unlike a single leaf, can absorb light in the infrared range, and also, the absorption coefficients of pigments for plants with different densities of canopy, may differ. Therefore, biologists had to make appropriate changes to the final model.

The researchers tested this mathematical model describing the canopy absorption coefficient on crops with different types of photosynthesis – corn (C4 photosynthesis), soybeans and rice (C3 photosynthesis), measuring the spectra of absorbed and reflected solar radiation.

The model showed that in the blue spectral region, the canopy of rice reflects more than the canopy of other crops. Scientists believe it is because rice grows in water. Also, absorption curves for plants with C3 type of photosynthesis (soybeans and rice) obtained with the model differed from those of plants with C4 type of photosynthesis (corn), due to biochemical differences.

Thus, the model created by biologists can "predict" the absorption of light by different types of plants with different types of photosynthesis, different canopy architectures and different pigment content in the leaf.

The article was published in Remote Sensing of Environment.

Visiting Professors View all
03 Nov 2017
Michele Pagano is a graduate of the University of Pisa, a leading scientist, the author of more than 200 publications in international journals, and a participant in many international research projects
3138
International Projects View all
Similar newsletter View all
16 Oct
Green Diplomacy Center opened in RUDN

A Center for Green Diplomacy was created based on the RUDN Institute of Environmental Engineering. Among the goals is the integration of the results of scientific and practical activities into the development of international relations in the environmental sphere. The center's specialists will also accompany the corporate sector in solving various environmental problems.

113
19 Apr
A huge pizza and a jug of water, why should 5G networks be sliced? The winners of RUDN science competition explain

RUDN summarized the results of the scientific competition "Project Start: work of the science club ". Students of the Faculty of Physics, Mathematics and Natural Sciences have created a project for a managed queuing system using a neural network to redistribute resources between 5G segments. How to increase flexibility, make the network fast and inexpensive and reach more users — tell Gebrial Ibram Esam Zekri ("Fundamental Computer Science and Information Technology", Master's degree, II course) and Ksenia Leontieva ("Applied Mathematics and Computer Science", Master's degree, I course).

178
19 Apr
Lyricists and physicists are now on equal terms: the first humanitarian laboratory opened in RUDN

What is your first association with the word “laboratory”? Flasks and beakers? Microscopes and centrifuges? Yes, many of us would answer the same way.

225
Similar newsletter View all