4
RUDN University scientist suggested a simple model of dense plasma spectral properties

RUDN University scientist suggested a simple model of dense plasma spectral properties

A scientist from RUDN University suggested a new physical model to describe the optical properties of dense plasma. The model was tested on available experimental data and does not require complex calculations. The work was published in the Annals of Physics journal.

Plasma is the fourth state of matter, along with solid matter, liquid, and gas. High-density (up to ~1 g/cm3) plasma is used in many technical and experimental installations such as heavy-current electrical discharge devices, control fusion targets, or laser targets that are used to study the properties of matter under extreme pressure.

An important feature of plasma is its light absorptance coefficient. Its value is to a great extent dependent on the photo effect (the transfer of energy from the photons to the electrons of a substance) and light absorptance in optical lines. Both of these processes, in turn, are due to the so-called microfield—an electric field inside plasma produced by the chaotic thermal movement of ions and free electrons. This field can fluctuate from its average value in time and space, and knowing its characteristics is important for solving numerous scientific and technical tasks.

“We have analyzed all models described in scientific literature and identified their disadvantages. Namely, these models provide for the infinite density of the electric field energy in an atomic cell which contradicts the laws of physics. The only model that doesn’t have these disadvantages is the Quasi Independent Particle model or QUIP. We developed a generalized version of this model that takes into account the inhomogeneity of plasma microfield. This helped us extrapolate the model to high-density plasma for which homogeneous microfield approximations cannot be used. The generalized QUIP model is very simple and does not require complex calculations, because all formulas are presented in an explicit manner,” said Alexander Belov, a Candidate of Physics and Mathematics and a senior lecturer at the Department of Applied Informatics and Probability Theory, RUDN University.

To confirm a theoretical model, one has to test it against experimental results. For this purpose, the team chose experiments on the fluorescence of laser-based plasma that have been going on since the 1980s. In these experiments, tiny glass bubbles were filled with a mix of deuterium, argon, krypton, neon, and other gases, covered with aluminum coating and then heated with a powerful multi-beam laser system. As a result, plasma with high temperature and density was formed inside the bubbles and emitted a series of lines in the X-ray range.

“The number of observable spectral lines can be theoretically predicted by a model. In the majority of works, this parameter was neither calculated nor compared to experimental data. Our analysis shows that all models except for QUIP gave wrong predictions that did not match experimental results. Therefore, our model is better at describing the experiment. This test is a convincing proof of the advantage that the generalized QUIP model has over other known models,” added Alexander Belov.

Description of heterogeneous plasma microfield and optical properties of plasma by the QUIP model

The article was published in Annals of Physics.

Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
1878
International scientific cooperation View all
16 Oct
530 applications, 90 young scientists from 30 countries. Darya Nazarova, a postgraduate student of RUDN Faculty of Economics, traveled 11,276 km from Moscow to Sao Paulo for the International Scientific School on Technological and Innovation Strategies and Economic Development Policy at the University of Campinas (UNICAMP). Darya Nazarova, a young RUDN scientist, writes about scientific research, rafting and the country of eternal carnival.
75
Similar newsletter View all
16 Oct
Green Diplomacy Center opened in RUDN

A Center for Green Diplomacy was created based on the RUDN Institute of Environmental Engineering. Among the goals is the integration of the results of scientific and practical activities into the development of international relations in the environmental sphere. The center's specialists will also accompany the corporate sector in solving various environmental problems.

108
19 Apr
A huge pizza and a jug of water, why should 5G networks be sliced? The winners of RUDN science competition explain

RUDN summarized the results of the scientific competition "Project Start: work of the science club ". Students of the Faculty of Physics, Mathematics and Natural Sciences have created a project for a managed queuing system using a neural network to redistribute resources between 5G segments. How to increase flexibility, make the network fast and inexpensive and reach more users — tell Gebrial Ibram Esam Zekri ("Fundamental Computer Science and Information Technology", Master's degree, II course) and Ksenia Leontieva ("Applied Mathematics and Computer Science", Master's degree, I course).

175
19 Apr
Lyricists and physicists are now on equal terms: the first humanitarian laboratory opened in RUDN

What is your first association with the word “laboratory”? Flasks and beakers? Microscopes and centrifuges? Yes, many of us would answer the same way.

221
Similar newsletter View all