4
RUDN University soil scientist showed how waterlogging of soils due to climate change increases the greenhouse effect

RUDN University soil scientist showed how waterlogging of soils due to climate change increases the greenhouse effect

RUDN University soil scientist studied the soil samples of the Tibetan plateau. It turned out that the increase in soil moisture, which occurs due to the melting of permafrost and glaciers, will lead to an even greater increase in temperature. The findings suggest that waterlogging needs to be contained to slow global warming.

The main cause of global climate change is the increase in the concentration of carbon dioxide. It accumulates in the atmosphere and retains heat, the planet does not have time to cool down and turns into a “greenhouse” — a greenhouse effect occurs. Carbon dioxide is produced not only by people, even the soil “breathes” — carbon, which is contained in the earth as part of various compounds, comes out in the form of carbon dioxide and increases the temperature. Because of warming, glaciers are melting, permafrost is thawing — as a result, soil moisture increases. Until now, it was not known how increasing humidity would affect the amount of carbon dioxide that is released from the soil. To find out, the soil scientist from RUDN studied soil samples of the Tibetan highlands, where the temperature rises three times faster than the global average.

“Despite the fact that soil drainage accelerates the mineralization of carbon in the soil and the release of carbon dioxide, increasing humidity does not necessarily lead to the opposite effect — to slow down the mineralization and release of carbon dioxide. To find out this, we investigated how these processes take place in wetland and meadow soils with contrasting biochemical properties,” Yakov Kuzyakov, Doctor of Biological Sciences, Head of the Center for Mathematical Modeling and Design of Sustainable Ecosystems of the RUDN University.

Soil scientists took samples of meadow and swamp soil and determined which substances contain carbon-undecayed plant residues or decomposed biomass. Then the meadow soil was saturated with water up to 70% of the amount that it could hold as much as possible. Marsh soil, on the contrary, was drained, withstanding 95 days at 25 ℃. Then the soil scientists from RUDN University again measured the carbon content in the samples and calculated how much the release of carbon dioxide changed with a change in humidity.

It turned out that in both cases, carbon dioxide was released more intensively. The reason for this is considered by soil scientists to be the original composition of carbon in the samples. In swamp soil, carbon is mainly contained in the composition of plant residues that have not yet decomposed. The carbon of meadow soil is mainly in the already decomposed biomass, soil enzymes work more actively in it. As a result, in swamp soil, high humidity inhibits carbon mineralization and the release of carbon dioxide. In meadow soil, the opposite happens — saturation with water further activates mineralization and the release of carbon dioxide.

“We showed that the decomposition of soil carbon in water-filled soil depended on the initial fraction of plant and microbial residues. Our work speaks to the importance of the biochemical nature in regulating the decomposition of carbon. We have come to the conclusion that both drainage of wetlands and waterlogging of meadows increase carbon mineralization (measured as CO2 release),” Yakov Kuzyakov, Head of the Center for Mathematical Modeling and Design of Sustainable Ecosystems RUDN.

The findings prove that protecting meadow soils from waterlogging will help curb the release of carbon dioxide and slow warming. Otherwise, there is a chain reaction-an increase in the greenhouse effect will lead to even greater global warming, increase waterlogging of meadows, and so on.

The results are published in Soil Biology and Biochemistry

International scientific cooperation View all
03 Nov 2017
The main goal of the RUDN University and UNISDR Office for Northeast Asia and Global Education and Training Institute for Disaster Risk Reduction at Incheon (UNISDR ONEA-GETI) cooperation is to obtain knowledge about disaster risk reduction and international experience in this area for creating training courses for basic and additional professional education in RUDN
1006
Scientific Conferences View all
03 Nov 2017
RUDN University organized the first 5G Summit R&D Russia on June 19 - 20, 2017
1394
Similar newsletter View all
31 Mar
RUDN University awards for specific areas of science and technology based on the results of 2021

Every year, RUDN University selects the best of the best in the field of science and innovation and encourages with a special reward. Since 2009, the Academic Council of the University has been awarding one reward in natural and technical sciences and the other one in social and humanitarian sciences. Both individual researchers and groups of authors can become laureates.

66
31 Mar
International Day of Women and Girls in Science: women scientists of the RUDN talk about their path to science

“Science is the basis of all progress that facilitates the life of mankind and reduces its suffering,” — Marie Sklodowska—Curie. A symbol of a woman’s success in science. The first scientist in the world — twice winner of the Nobel Prize.

308
31 Mar
RUDN University Mathematicians Create a Model for Queue Organizing with Self-Sustained Servers

RUDN University mathematicians proposed a model for optimizing the operation of queuing systems (from computer networks to stores). Unlike analogues, the servers in it are self-sustained. They can determine when to start and stop working themselves. Such a model can be useful, for example, for online taxi services and other systems where workers choose their own operating hours.

75
Similar newsletter View all