  The challenge of the Millennium. One step closer to the solution

# The challenge of the Millennium. One step closer to the solution

In 2017, RUDN University scientists constructed a new explicit second-order precision difference scheme using modern computer algebra methods for 2-dimensional Navier-Stokes equations (NSE) . This year, our mathematicians used a new scheme  to construct a numerical solution to the Cauchy problem with initial data (for t=0) as satisfying the continuity equation. Scientists managed to achieve previously unattainable accuracy of the continuity equation. The main purpose of the Navier-Stokes equations is to show how mathematics can be applied in practice in solving problems of modeling liquids and gases. For example, when modeling weather, ocean currents, air flow in a pipe or around an airplane wing. Since the 19th century, these equations have been used to describe the phenomena of the physical world. RUDN University scientists managed to significantly improve the quality of approximation of the numerical solution of a system of differential equations.

The Navier-Stokes equations (NSE) are a system of nonlinear partial differential equations. These are the most important equations in hydrodynamics: they are used for mathematical modeling of many natural phenomena and technical devices.

In the case of a mathematical model of a continuous medium-a viscous incompressible liquid, for example, water, the system includes an incompressibility equation, usually called the continuity equation. This is a linear partial differential equation, which is a mathematical formulation of the law of conservation of the total mass of the liquid involved in the process under study. The remaining equations of the NSE system are nonlinear equations and are a mathematical formulation of the law of conservation of momentum for the elements of the volume of a liquid during its flow. From these equations, it is convenient to find by numerical methods the distribution of flow velocities in the considered volume of liquid. Depending on the process under study, the fluid flow can be considered as one-dimensional, two-dimensional or three-dimensional. This means that the variables describing fluid dynamics, i.e. the spatial components of velocity and pressure, depend, respectively, on one, two or three spatial coordinates. In addition, for a non-stationary (unsteady) flow, all these variables also depend on time.

The analysis of finite-energy NSE solutions, namely, the rigorous proof of the existence of such solutions, is the essence of one of the six unsolved “Millennium problems” for which the clay Mathematical Institute has awarded a \$ 1 million prize. It is necessary to prove or disprove the existence of a global error-free solution of the Cauchy problem for three-dimensional NSE, which has finite energy.

A General analytical solution of the NSE, both for spatial and plane flow, cannot be found due to non-linearity and strong dependence on initial and/or boundary conditions. It remains to solve the NSE by numerical methods, for which the differential equations must be approximated, i.e. consciously simplified, by discrete equations. But at the same time, the challenge remains the construction of such an approximation, which inherits at a discrete level, with a sufficiently high accuracy, not only all the conservation laws (momentum and mass) inherent in the UNS, but also all the mathematical consequences of these equations.

In their 2017 paper , our scientists used modern computer algebra to construct a new second-order precision difference scheme for 2-dimensional NSE. The scheme on the test example of the only known non-stationary exact solution of the NSE showed very good numerical behavior.

New numerical results obtained in the 2020 paper “Strong Consistency and Thomas Decomposition of Finite Difference Approximations to Systems of Partial Differential Equations” are shown in the figure below, where FDA1 is the described scheme and FDA2-FDA4 are the other schemes used for comparison. From the figure taken from the paper, it can be seen that the continuity equation is performed by the FDA1 scheme with an accuracy of 6 or more orders of magnitude higher than the accuracy of this equation by other explicit second-order schemes.

This accuracy of the continuity equation without its explicit consideration in solving the Cauchy problem is achieved for the first time and is an unprecedented result. In addition, the fda1 scheme is significantly superior (by 10 or more times) to the FDA2-FDA4 schemes, both in terms of the accuracy of calculating speeds and pressure.

Millennium problems — in 2000, the Clay Mathematical Institute announced a list of the most important classical problems that have remained unanswered for many years. For solving each of the problems, now there are six of them, the clay Institute has appointed a prize of 1,000,000 US dollars. One of the Millennium problems (the Poincare hypothesis) was solved by the Russian mathematician G.Ya. Perelman in 2002-2003.

The Clay Mathematical Institute is a private Institute in the United States, founded in 1998. The main goal of the mathematical Institute is to increase and disseminate knowledge in the field of mathematics.

The Cauchy problem is one of the main problems of the theory of differential equations. It consists in finding a solution (integral) of a differential equation that satisfies the so-called initial conditions (initial data).

Scientific Conferences View all
03 Nov 2017
RUDN University organized the first 5G Summit R&D Russia on June 19 - 20, 2017
1484
Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
1273
15 Jul
RUDN University Chemist: Algae Can Both Purify Lead-contaminated Water and Create Biofuel

Lead is one of the most common heavy metals that pollute the environment. The level of lead pollution is constantly growing because of its use in the production of batteries, paints, and fuel. Basically, lead enters the environment through the wastewater of production facilities. From there, it affects the entire ecosystem. One of the ways to purify water from lead is bioremediation. Toxic metal is absorbed by microorganisms that become resistant to it, for example, through increased accumulation of lipids. RUDN University chemist together with colleagues investigated the possibility of using microalgae Chlorella Sorokiniana for bioremediation. Chemists have also shown that the protective mechanisms of algae not only reduce the level of pollution, but also increase the potential of using microorganisms as biofuels.

43
15 Jul
RUDN University Scientist Shows A New Mechanism For The Formation Of Antitumorigenic Effects In The Tumor Microenvironment

RUDN University scientist together with colleagues from Germany for the first time showed the unique possibilities of studying the CD38 protein in mast cells using multiplex immunohistochemistry technologies. The obtained results open up new horizons in the study of the antitumorigenic effects of the tumor microenvironment and the development of promising methods of cancer immunotherapy.

40
15 Jul
The Chemist RUDN Proposed Effective Catalysts For Water Purification From Caffeine

The chemist RUDN proposed a way to destroy caffeine with the help of ultraviolet radiation and available composites. The discovery will help to safely clean the water from accidental contamination.

40