1
Chemists from RUDN University developed biodegradable antibacterial film for storing food

Chemists from RUDN University developed biodegradable antibacterial film for storing food

A team of chemists from RUDN University created an antibacterial coating for food products. The mixture consists of two components that are safe for human health and form a thin, non-toxic, and biodegradable film. The film has no color or flavor and can increase the shelf life of different products 2.5 to 8 times.

Food wraps are usually produced from chemical compounds based on synthetic polymers such as polyethylene and polypropylene. These materials are bad for the environment and take dozens, if not thousands of years to decompose. Naturally, a food coating should protect the food and contain no toxins that could contaminate it, but it is also important for it to decompose without a trace after being used. A team of chemists from RUDN University created such a coating from polysaccharides—natural macromolecules that are the building blocks of living organisms. Polysaccharides do not have a negative effect on health, are biodegradable and non-toxic.

The antibacterial coatings suggested by the team are based on chitosan, a polysaccharide that is found in carapaces of crabs or in lower fungi. Specifically, the chemists used two derivatives of chitosan: SC-Na, or chitosan succinyl sodium salt, and a compound of triazole, betaine, and chitosan (TBC). The latter possesses antibacterial properties comparable to those of modern-day antibiotics. According to the team, TBC nanoparticles embed into an SC-Na grid or matrix, creating a thin uniform film. It is much stronger than any of its individual components and lets less oxygen and steam in. In the course of the experiments, the scientists confirmed that the film is the most efficient when the SC-Na to TBC ratio is 1 to 1.

“We managed to obtain non-toxic chitosan derivatives with extraordinary antibacterial properties almost similar to those of commercial antibiotics and suggested that they could be used to increase film durability and antibacterial characteristics. We based our coating on SC-Na, a salt with high film-forming ability. Moreover, it is not toxic and works as an antioxidant, increasing the shelf life of food products. By changing the TBC/SC-Na ratio, we developed multifunctional food coatings with improved antibacterial, protective, and mechanical properties,” said Andreii Kritchenkov, a Candidate of Chemical Sciences, and a research assistant at the Department of Inorganic Chemistry, RUDN University.

To test their invention, the team put several bananas in the film for 10 days. In the course of the experiment, the scientists measured their weight, vitamin C content, and the level of carbon dioxide emission. After 10 days, these parameters were compared to the results from the control group that was kept without coating. Coated fruit turned out to have lost 3 times less weight and 8 times less vitamin C, and the frequency of their ’breathing’ was 2.6 times lower (i.e. metabolic processes that are associated with CO2 emissions slowed down).

Thanks to these properties, chitosan-based films can be used to store food products. After a film has been used, it will decompose without causing harm to the environment.

The article was published in Food Packaging and Shelf Life

30 Jan 2018
The conference on international arbitration, where law students from European universities simulate court proceedings and alternately defend the interests of the respondent and the orator.
665
Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
1009
Similar newsletter View all
30 Dec
Biologists from RUDN University discovered the secret of flaxseed oil with long shelf life

Biologists from RUDN University working together with their colleagues from the Institute of Molecular Biology of the Russian Academy of Sciences and the Institute of Flax studied the genes that determine the fatty acid composition in flaxseed oil and identified polymorphisms in six of them. The team also found out what gene variations could extend the shelf life of flaxseed oil. This data can be used to improve the genetic selection of new flax breeds. The results were published in the BMC Plant Biology journal.

256
11 Oct
Mowing Is More Harmful to Soil Than Grazing

A team of biologists analyzed soil samples from a pasture and a regularly mowed meadow and found out that grazing lets more carbon get into the soil than mowing. This, in turn, improves the carbon cycle and makes microorganisms more efficient.

12
11 Oct
Soil scientists suggest method for remediating urban garden soils contaminated with lead and arsenic

The soils of urban gardens and vegetable patches contain a lot of toxicants (including lead and arsenic) in high concentrations which can be harmful to the health of children and people with chronic diseases. A team of soil scientists from RUDN University suggested a remediation method developed based on data collected in a garden of Brooklyn (NY, U.S.).

14
Similar newsletter View all