1
RUDN University Biophysicist modelled the effect of antiseptics on bacterial membranes

RUDN University Biophysicist modelled the effect of antiseptics on bacterial membranes

A team of biophysics from leading Russian research and educational institutions (MSU, RUDN University, and the Federal Research and Clinical Center of the Federal Medical-Biological Agency of Russia) developed a computer model that shows the effect of antiseptics on bacterial membranes. The common concepts regarding the mode of action of antiseptics turned out to be incorrect: instead of destroying bacterial membranes, they cause changes in their structure. These changes make the bacteria weaker and more susceptible to adverse external factors.

Antiseptics are chemical agents that affect the internal processes or external structures of harmful microorganisms causing them to die. For example, alcohols break down important building and regulation blocks of bacteria and viruses. Other antiseptics target the integrity of bacterial membranes. They are effectively used against a wide range of pathogens, but their mode of action remains elusive. Scientists are aware of some general patterns, such as the presence of electrically charged particles in the molecules of antiseptic agents. The team developed a computer model of a bacterial membrane and found out the mechanism of the antiseptic activity. The results of the study can help to combat bacterial resistance.

“Some pathogens, especially those associated with hospital infections, show resistance to antiseptics. It is important to understand the physics behind the interaction of antiseptics and microorganisms to use antiseptics more efficiently and to develop new agents,” said professor Ilya Kovalenko, Ph.D., Doctor of Science in Physics and Mathematics, working under Project 5-100 at RUDN University.

The scientists developed a model of a bacterial membrane and put the molecules of four antiseptics (miramistin, chlorhexidine, picloxydine, and octenidine) on it. All these substances are cationic antiseptics, i.e. their molecules are positively charged. However, to the researchers’ surprise, the antiseptics failed to damage the membrane and just slightly changed its structure. Even when the ratio of antiseptics to membrane lipids was increased from 1/24 to 1/4, the membrane was not destroyed.

The destruction of the membrane took place only when an external electric field (with the intensity of 150 mV/nm) was added to the model. The membrane started to restructure, and pores began to form around the molecules of the antiseptics. Then, water got into them and made them bigger; and eventually, the membrane was torn apart. This was because the membrane became thinner around positively charged molecules: the molecules of the membrane had no charge and therefore were pushed away. An uneven membrane became more susceptible to adverse external factors, which led to the death of the cell.

“We studied the reaction of the model membrane to several cationic antiseptics and found out that structural changes in the membrane in the presence of an electrical field play a key role in the formation of pores. We plan to use this model to predict the effect of existing and new antiseptics on different microorganisms,” added professor Ilya Kovalenko, Ph.D., Doctor of Science in Physics and Mathematics, working under Project 5-100 at RUDN University.

The results of the study were published in The Journal of Physical Chemistry.

Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
1590
Visiting Professors View all
03 Nov 2017
Michele Pagano is a graduate of the University of Pisa, a leading scientist, the author of more than 200 publications in international journals, and a participant in many international research projects
2572
Similar newsletter View all
07 Jul
RUDN University Biologist: salted water saves fish from stress when transporting

RUDN University biologist with colleagues from Brazil and Iran found how to alleviate the stress of fish during transportation. It turned out that this can be achieved with salted water.

62
20 Apr
RUDN University agronomists increased wheat yield by 65%

RUDN University agronomists have proposed a new scheme for fertilizing winter wheat, which allows increasing the yield by 68%. The key to this is in the combination of nitrogen and growth regulators.

122
20 Apr
RUDN Biologists Study Live Microorganisms in Toxic Liquids for Metalworking

RUDN biologists have studied microorganisms that can survive in metalworking fluids. The results will allow “picking up” bacteria and fungi that can process toxic waste fluids into a harmless product.

116
Similar newsletter View all