2
A chemist from RUDN University synthesized analogs of natural toxins

A chemist from RUDN University synthesized analogs of natural toxins

A chemist from RUDN University suggested a simple and accurate method for the synthesis of analogs of two natural toxins, antofine and septicine. This universal approach can also be used to obtain other biologically active substances for medicinal chemistry.

Antofine and septicine have antibacterial and antitumor properties and therefore can be used in the pharmaceutical industry. However, it is difficult to obtain them directly from natural plant sources: they are hydrophobe and can sometimes be unexpectedly toxic. A chemist from RUDN University developed a universal method to produce 2-pyridone derivatives on which antofine and septicine are based.

2-pyridone and 4-pyrimidone are cyclic molecules with one oxygen atom attached to the cycle. The cycle of the former compound contains one nitrogen atom, and of the latter--two. Both substances are used as molecular frameworks for medicinal drugs. By attaching additional cycles and atoms to them, one can obtain compounds with antitumor, antiviral, anti-inflammatory, and antimalarial properties. The developed method of 2-pyridone and 4-pyrimidone production consists of just 2 steps.

The first step is the so-called four-component Ugi reaction. Using it, one can obtain peptide fragments (analogs of proteins) from four simple substances. In his experiment, the chemist from RUDN University used different substances at room temperature and the Ugi reaction went on for 12 hours. As a result, around 60 different compounds were obtained, and in all of them, a hydrocarbon ring was attached to other groups of atoms with peptide bonds.

In the next step, several new cycles had to be created in the peptide fragment, and at least one of them had to contain nitrogen atoms. To achieve this, the chemist suggested using gold-based catalysts. Out of five tested catalysts, one produced the best 2-pyridone yield (75%). This result was achieved in the reaction with the first of the synthesized peptide fragments. Further studies showed that the use of other first-stage products can lead up to 93% yield of the products with the required molecular frameworks. The same approach was used for the synthesis of 4-pyrimidone derivatives.

"The main advantage of our method is the ability to develop organic substances based on heterocycles with different functional groups. This advantage appears at the stage of the four-component Ugi reaction, as many simple and affordable reagents can be used in it. The cyclization reaction suggested by us can involve reagents with different functional groups. The simplicity of this approach and a wide range of potential results make it favorable for medicinal chemistry," said Erik Van der Eycken, the head of the Joint Institute for Chemical Research at RUDN University.

The research was published in the Organic Letters journal.

Student's Scientific Initiatives View all
03 Nov 2017
June 22 - 26, 2017 in Barnaul, Altai State University, took place the Summer Academy of the BRICS Youth Assembly, an international event that brought together representatives of different countries
1437
Visiting Professors View all
03 Nov 2017
Michele Pagano is a graduate of the University of Pisa, a leading scientist, the author of more than 200 publications in international journals, and a participant in many international research projects
2560
Similar newsletter View all
07 Jul
RUDN University Biologist: salted water saves fish from stress when transporting

RUDN University biologist with colleagues from Brazil and Iran found how to alleviate the stress of fish during transportation. It turned out that this can be achieved with salted water.

57
20 Apr
RUDN University agronomists increased wheat yield by 65%

RUDN University agronomists have proposed a new scheme for fertilizing winter wheat, which allows increasing the yield by 68%. The key to this is in the combination of nitrogen and growth regulators.

119
20 Apr
RUDN Biologists Study Live Microorganisms in Toxic Liquids for Metalworking

RUDN biologists have studied microorganisms that can survive in metalworking fluids. The results will allow “picking up” bacteria and fungi that can process toxic waste fluids into a harmless product.

114
Similar newsletter View all