2
RUDN Chemists discovered three complex compounds with rare magnetic properties

RUDN Chemists discovered three complex compounds with rare magnetic properties

A chemist from RUDN has synthesized and described three compounds with manganese atoms in the center. They can be used as catalysts or new generation information storage cells.

Coordination complex is complex structure with a metal atom in the center, to which various ligand molecules are attached. If there are more than two of these atoms, the compounds are referred to as multinuclear. In this case, the metal framework can look like chains, branched cycles, polyhedra or their combinations. Non-standard bonds between metals allow obtaining compounds with unusual metal oxidation states and pronounced catalytic properties. This allows their application in the synthesis of drugs, varnishes, and paints, as well as in other branches of the chemical industry. In addition, the magnetic properties of such complexes can be used for new ways to store information. Manganese also forms complex compounds, for example, inside chlorophyll, through which photosynthesis occurs. However, multinuclear complexes with manganese are often unstable. RUDN chemists reported the synthesis of several compounds of this class at once.

"In this paper, we describe the synthesis methods, crystal structure, and magnetic properties of three new multinuclear mixed valence clusters that we were able to obtain from manganese (II) chloride," co-author Dmitro Nesterov from RUDN.

The valence is indicated by Roman numerals and shows the ability to form a certain number of chemical bonds. Two of the described compounds are tetranuclear and contain two manganese atoms each with valence II and two each with valence III. In [MnII2MnIII2(HBuDea)2 2(BuDea)2(EBA)4] the ligands were 2-ethyl ether of butyric acid and N-butyl diethanolamine, and in the second compound [MnII2MnIII2(HBuDea) 2(BuDea)2(DMBA)4] - N-butyl diethanolamine and 2,2-dimethyl ether of butyric acid. In the third compound, three manganese II atoms, eight manganese III atoms, and four oxygen atoms form an eleven-nuclear structure to which the ligands N-butyldietanolamine and 2,2-dimethyl ester of butyric acid are attached.

RUDN chemist and his colleagues from Slovakia and Portugal succeeded in obtaining these complexes using self-assembly reactions. The synthesis requires manganese (II) chloride, a solution of carbolic acid in methanol, and 2-ethyl ester of butyric acid for the first compound, and 2,2-dimethyl ester of butyric acid for the second and third. Whether the second route produced a four-nuclear or an eleven-nuclear cluster depended on the experimental conditions. X-ray crystallography showed that both quadruple nuclei had a similar symmetrical structure, while the third had a non-standard structure. The quaternary complexes exhibited the properties of a single-molecule magnet - that is, they can form superparamagnetic materials. This means that they can be uniformly magnetized throughout their volume and change their magnetic moment depending on temperature. The eleven-nucleus cluster, on the contrary, had antiferromagnetic properties, i.e., the magnetic moments of the particles in such a substance are in pairs directed in opposite directions.

"Also in the paper we discussed the possible influence of intramolecular effects and the different surroundings of the magnetic nuclei that the 2-ethyl ester of butyric acid and 2,2-dimethyl ester of butyric acid ligands formed. Superparamagnetics and antiferromagnetics exhibit unusual properties that could be used in future high-tech applications. For example, they can become the basis for new generation memory cells, where only a few tens of atoms are required to record information," Nesterov added.

The results of the study were published in Dalton Transactions.

International Projects View all
International scientific cooperation View all
03 Nov 2017
The main goal of the RUDN University and UNISDR Office for Northeast Asia and Global Education and Training Institute for Disaster Risk Reduction at Incheon (UNISDR ONEA-GETI) cooperation is to obtain knowledge about disaster risk reduction and international experience in this area for creating training courses for basic and additional professional education in RUDN
877
Similar newsletter View all
30 Dec 2021
Biologists from RUDN University discovered the secret of flaxseed oil with long shelf life

Biologists from RUDN University working together with their colleagues from the Institute of Molecular Biology of the Russian Academy of Sciences and the Institute of Flax studied the genes that determine the fatty acid composition in flaxseed oil and identified polymorphisms in six of them. The team also found out what gene variations could extend the shelf life of flaxseed oil. This data can be used to improve the genetic selection of new flax breeds. The results were published in the BMC Plant Biology journal.

320
30 Dec 2021
A Chemist from RUDN University Developed a New Method for Combating Antibiotic Resistance in Microbes

Bacteria in biofilms are 1,000 times more resistant to antibiotics, disinfectants, mechanical treatment, and other types of stress. A chemist from RUDN University suggested a method to prevent the formation of biofilms and reduce the resistance of bacteria to antimicrobial medications. This might help increase the efficiency of antibacterial treatment in the food industry, medicine, and agriculture.

36
30 Dec 2021
Chemists from RUDN University used crab shells to improve palladium catalysts

Chemists from RUDN University synthesized soluble biopolymers based on chitin from crab shells. Together with palladium, they form effective catalysts for organic reactions, and their nanoparticles can be re-used over ten times.

18
Similar newsletter View all