2
RUDN University improves eye tracking technology in VR systems

RUDN University improves eye tracking technology in VR systems

The tracking of eye movement is one of the key elements of virtual and amplified reality technologies (VR/AR). Professor from RUDN University developed a mathematical model that helps accurately predict the next gaze fixation point and reduces the inaccuracy caused by blinking. At the same time, the observational error that occurs due to blinking was reduced by 10 times. The model would make VR/AR systems more realistic and sensitive to user actions.

Foveated rendering is a basic technology of VR systems. When a person looks at something, their gaze is focused on the so-called foveated region, and everything else is covered by peripheral vision. Therefore, a computer has to render the images in the foveated region with the highest degree of detail, while other parts require less computational powers. This approach helps improve computational performance and eliminates issues caused by the gap between the limited capabilities of graphic processors and increasing display resolution. However, foveated rendering technology is limited in speed and accuracy of the next gaze fixation point prediction because the movement of a human eye is a complex and largely random process. To solve this issue, a team of researchers from MSU together with a professor from RUDN University developed a mathematical modeling method that helps calculate next gaze fixation points in advance.

"One of the issues with foveated rendering is timely prediction of the next gaze fixation point because vision is a complex stochastic process. We suggested a mathematical model that predicts gaze fixation point changes," said Prof. Viktor Belyaev, a Ph.D. in Technical Sciences from the Department of Mechanics and Mechatronics of RUDN University.

The predictions of the model are based on the study of the so-called saccadic movements, fast and rhythmic movements of the eye. They accompany the shifts of our gaze from one object to another and can suggest the next fixation point. The ratio between the length, range, and maximum speed of saccadic eye movements is determined by certain empirical regularities. However, these models cannot be used by eye trackers to predict eye movements because they are not accurate enough. Therefore, the researchers focused on a mathematical model that helped them obtain saccadic movement parameters. After that, this data was used to calculate the foveated region of an image.

The method was tested experimentally using a VR helmet and AR glasses. The eye tracker based on the mathematical model was able to detect minor eye movements (3.4 minutes, which is equal to 0.05 degrees), and the inaccuracy amounted to 6.7 minutes (0.11 degrees). Moreover, the team managed to eliminate the calculation error caused by blinking: a filter included in the model reduced the inaccuracy 10 times. The results of the work could be used in VR modeling, video games, and in medicine for surgeries and vision disorders diagnostics.

"We have effectively solved the issue with the foveated rendering technology that existed in the mass production of VR systems. In the future, we plan to calibrate our eye tracker to reduce the impact of display or helmet movements against a user's head," added Prof. Viktor Belyaev from RUDN University.

The results of the study were published in the SID Symposium Digest of Technical Papers.

Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
2006
International Projects View all
Similar newsletter View all
20 Apr
A volunteer of the Red Army and head of the veterinary medicine course — Matilda Mityaeva's combat and scientific path

Matilda Pavlovna Mityaeva was born in 1925. In November 1942, she volunteered for frontline duty. She participated in the Great Patriotic War from November 1942 to June 1945 as part of the 53rd Infantry Division of the 475th Infantry Regiment. She was wounded twice.

24
20 Apr
RUDN University Team – the 1st place in the all-russian competitive selection of scientific projects “Technologies for human health”

The team led by Sergey Zyryanov, Head of the Department of General and Clinical Pharmacology, became the winner of the All-Russian competition of scientific projects "Technologies for Human Health".

32
20 Apr
RUDN University Scientific Agenda to 2030: New Programme for R&D and Innovation Activities Development

RUDN University constantly adapts to the changes of the modern world and responds to challenges flexibly. This allows us to keep the standard of a world-class research university. The sphere of science is no exception. Peter Dokukin, Head of the Research Division, presented the updated R&D Programme at the meeting of the RUDN University Academic Council.

23
Similar newsletter View all