3
RUDN medic discovered how antitumor enzyme penetrates cancer cells

RUDN medic discovered how antitumor enzyme penetrates cancer cells

The RUDN medic showed for the first time how the enzyme asparaginase, derived from the bacterium Rhodospirillum rubrum, penetrates into breast cancer cells. The study also confirmed that the enzyme has antitumor activity not only due to its ability to break down the amino acid asparagine — it can also suppress the activity of telomerase inside the nuclei of cells. Thus, it can be used as a drug with a dual mechanism of antitumor activity.

Cells, including cancer cells, need the amino acid asparagine for metabolism. Healthy cells produce it themselves, but cancer cells cannot do this, they depend on the intake of asparagine from the outside. The enzyme asparaginase destroys asparagine, therefore, under its action, cancer cells die due to the lack of the necessary asparagine. In addition, asparaginase has other mechanisms of action unrelated to asparagine. For example, asparaginase RrA, which is produced by the purple bacterium Rhodospirillum rubrum, suppresses the activity of the enzyme telomerase. It does not allow chromosomes to shorten during cell division, and therefore it is called the main cause of the “immortality” of cancer cells. This happens inside the cell or even inside the nucleus, that is, the RrA is able to pass through the cell membrane. How exactly — it was still unknown. RUDN physician for the first time described the mechanism by which this happens.

“The antitumor effect of asparaginase is explained by its ability to decompose asparagine in the bloodstream and in the environment of cancer cells. Rru has a dual mechanism of action and plays a role in suppressing telomerase activity. The purpose of our work was to study the mechanism by which RrA penetrates into human cancer cells,” said Vadim Pokrovsky, Doctor of Medical Sciences, RUDN Head of the Department of Biochemistry.

In the experiment, doctors used eight human cancer cell lines, including breast cancer. The researchers “tagged” the RrA using fluorescent isothiocyanate substances and placed them in prepared cell cultures. Then the doctors observed how the enzyme moves inside the cancer cells using fluorescence microscopy and flow cytometry.

It turned out that the penetration of RrA occurs with the help of the clathrin protein. The mechanism of penetration is receptor-mediated endocytosis. A “pit” is formed on the cell membrane — a bulge inside the cell. Ra molecules combine with clathrin molecules inside this fossa. After that, closed vesicles form from the pit, which turn out to be inside the cell. Then the walls of the vesicle disintegrate, and the enzyme enters the cell, and katrin returns to the membrane.

Researchers also found two structure motifs in RrA — sequences of amino acids — with which the enzyme acts inside the cell nucleus. They allow RrA to get into the cell nucleus, where it blocks the action of telomerase — this prevents cancer cells from dividing.

“For the first time, we were able to show the intracellular localization of RrA in human breast tumor cells. Our study demonstrated that different L-asparaginases can have complex mechanisms of antitumor activity, including regulation of RNA synthesis. Thus, RrA can potentially be used as an antitumor enzyme with a dual mechanism of action,” — added Vadim Pokrovsky.

The results are published in the journal Pharmaceuticals.

Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
1309
Visiting Professors View all
03 Nov 2017
Michele Pagano is a graduate of the University of Pisa, a leading scientist, the author of more than 200 publications in international journals, and a participant in many international research projects
2027
Similar newsletter View all
15 Jul
RUDN physicians have identified genetic characteristics that may affect the predisposition to re-stenosis

RUDN University physicians have identified genetic characteristics that may affect the predisposition to re-stenosis — narrowing of the lumen of the vessel — after the installation of a stent. The results will help to determine the risk of restenosis and select personalized therapy more accurately.

28
15 Jul
RUDN Chemists Have Created a Reusable Switch Catalyst for The Synthesis of Two Different Compounds

RUDN chemists have created a reusable catalyst for the oxidation of sulfides for the synthesis of drugs, dyes, and other compounds. It can “switch” the final product and provides “green” reaction conditions.

40
15 Jul
Scientists Report New Hydrogel to Protect Wounds from Germs

RUDN University and Shahid Beheshti University (SBU) chemist together with colleagues from Iran created a hydrogel film for wound dressing. It protects the wound from germs and is harmless to healthy tissues. Moreover, its porous structure can hold antibiotic, which kills dangerous microorganisms and provide additional protection.

20
Similar newsletter View all