Soil scientists suggest method for remediating urban garden soils contaminated with lead and arsenic
High levels of soil contamination in green spaces are potentially harmful to human health. Toxic elements increase the risks of lung, skin, and bladder cancer, as well as various skin disorders. The team took soil samples in Brooklyn urban garden that had been widely discussed in the New York Post as a toxic place.
Dr. Anna Paltseva (RUDN University) together with her colleagues from CUNY Brooklyn College measured the levels of contamination in the garden and analyzed the efficiency of different methods aimed at reducing phyto- and bioaccessibility of lead and arsenic (i.e. the amounts of these chemicals that are accessible in the soil and consumed by plants). These are important parameters because they are more reflective of risks for human health than the general concentration of toxic elements in the soil. Overestimating risks is as bad as underestimating them: it can negatively affect people’s interest in city green spaces and undermine their trust in environmental authorities.
The work fills in some gaps in fundamental research and analysis of the effect of toxic metal footprints on human health. All experiments were conducted on-site without laboratory simulation, which is new for this field of study. “We confirmed that popular fertilizers often do not have the desired effect in the presence of two or more contaminating agents. We also suggested using local resources to combat this issue: for example, glacial deposits that were formed here in the North East of the US during the Last Ice Age over 10 thousand years ago. Mixed with compost, this glacial sand can be used for many years”, said Anna Paltseva, Ph.D. in Earth and Environmental Sciences.
Field studies showed that the most contaminated part of the garden was a soil patch under a peach tree. Supposedly, the reason for it is copper chromated arsenate (CCA), a wood preservation agent that was used here in the past. The team selected four areas in the contaminated territory: three experimental and one control plot. Then, they treated the experimental areas with bone meal, compost, and sulfur. After that, some common urban garden vegetables (tomatoes, eggplants, onions, cabbage, and kale) were planted without any additional fertilizers. When the vegetables ripened, the scientists took their edible parts and compared the levels of arsenic and lead in them against European standards.
All three treatment methods turned out to have considerably reduced the bioaccessibility of lead compared to the control plot: from 33% to 24% in the cases of bone meal and sulfur and to 23% in the case of compost. However, the bioaccessibility of arsenic remained high (80% to 93%) regardless of the treatment.
According to the team, it is the swallowing of soil and dust, not the consumption of fruit and vegetables that poses the biggest threat of lead and arsenic poisoning. The concentration of harmful substances in study varied among different kinds of vegetables: onions showed the highest concentration levels while tomatoes the lowest. According to the authors, the construction of raised beds and the replacement of contaminated soil remain the most efficient remediation method. However, the team will continue their study of alternative remediation methods applicable to urban soils. “Right now at RUDN Smart Urban Nature Laboratory (sunlab.rudn.ru/service/wp2-soi ... -quality-soil-health) we are developing new express techniques that would help us quickly assess the quality of urban soils, and later on—of vegetables and fruits,” added Dr. Paltseva.
The article about the study was published in the Science of the Total Environment journal.
A Center for Green Diplomacy was created based on the RUDN Institute of Environmental Engineering. Among the goals is the integration of the results of scientific and practical activities into the development of international relations in the environmental sphere. The center's specialists will also accompany the corporate sector in solving various environmental problems.
RUDN summarized the results of the scientific competition "Project Start: work of the science club ". Students of the Faculty of Physics, Mathematics and Natural Sciences have created a project for a managed queuing system using a neural network to redistribute resources between 5G segments. How to increase flexibility, make the network fast and inexpensive and reach more users — tell Gebrial Ibram Esam Zekri ("Fundamental Computer Science and Information Technology", Master's degree, II course) and Ksenia Leontieva ("Applied Mathematics and Computer Science", Master's degree, I course).
A Center for Green Diplomacy was created based on the RUDN Institute of Environmental Engineering. Among the goals is the integration of the results of scientific and practical activities into the development of international relations in the environmental sphere. The center's specialists will also accompany the corporate sector in solving various environmental problems.
RUDN summarized the results of the scientific competition "Project Start: work of the science club ". Students of the Faculty of Physics, Mathematics and Natural Sciences have created a project for a managed queuing system using a neural network to redistribute resources between 5G segments. How to increase flexibility, make the network fast and inexpensive and reach more users — tell Gebrial Ibram Esam Zekri ("Fundamental Computer Science and Information Technology", Master's degree, II course) and Ksenia Leontieva ("Applied Mathematics and Computer Science", Master's degree, I course).