4
Chemists propose a new method for the synthesis of pyrroles

Chemists propose a new method for the synthesis of pyrroles

RUDN University chemists proposed a new safe approach for the synthesis of pyrroles, substances used in the production of biologically active compounds, from simple and affordable raw materials. The new method would reduce the cost of final products (including some medicinal drugs) hundreds of times.

Pyrrole and its derivatives play an important role in the synthesis of biologically active substances. Dozens of medications are based on pyrrole, including the antitumor drug Sunitinib; BM212, which suppresses the growth of tubercle bacillus, and Toradol, which is used as an anti-inflammatory agent and painkiller. Pyrrole derivatives are also used to produce borondipyrromethenes (BODIPY) that are a part of photodynamic cancer therapy.

Pyrrole is a heterocyclic aromatic organic compound, a five-membered ring. Pyrroles are synthesized in a combination reaction of isocyanides (molecules with an N≡C group) and alkynes (hydrocarbons with a C≡C ternary bond). Depending on the structure of the original reagents, different molecular fragments (substitutes) bind with the pyrrole ring. Copper salts that are toxic for living cells are used for catalysis. The reaction has several stages, as pyrroles have to be purified from byproducts.

Ilya Efimov and Rafael Luque, two chemists from RUND University, working together with Prof. Leonid Voskressensky, proposed an alternative method for producing pyrroles that does not involve copper salts. Instead of alkynes, scientists used enamines. In their molecules, the С=С double bond is bound with nitrogen, and as a result of the reaction, pyrroles with two substitutes in a ring are formed. The reaction has just one stage and is practically immediate. The process allows for the selective production of pyrroles from reagents without byproducts that normally require many stages of purification. The only extra product is dimethylamine that can be easily removed by treating with hydrochloric acid. Pyrroles can be separated by simple filtration. In some cases, the cost of original reagents for the suggested method is 225 times lower than for alkynes.

According to the scientists, the yield of pyrroles exceeds 40% only when the strong base potassium tert-butoxide is used as a base. However, it is easily removed with hydrochloric acid. Donor substitutes that are present in the isocyanide structure and increase the electron density of the molecule also show a positive effect on the yield.

"The new method is simpler and safer than the traditional alkyne-based synthesis. When applied on a scale production, it would reduce the cost of products and make them less toxic. Also, it can be used to produce some pyrroles that were previously unavailable for us," said Ilya Efimov, a junior researcher at RUDN University, Candidate of Chemical Sciences.

The group of scientists used the new method to synthesize 4-azolylpyrroles that had never been studied before. To do so, they investigated enamines with isoxazole, 1,2,4-oxadiazole, and 1,2,3-thiadiazole fragments to the reaction with isocyanides. The new compounds can become precursors for the development of medicinal drugs against amoebas, lamblia, trichomonads, and toxoplasma.

The article was published in the European Journal of Organic Chemistry.

International Projects View all
International scientific cooperation View all
03 Nov 2017
The main goal of the RUDN University and UNISDR Office for Northeast Asia and Global Education and Training Institute for Disaster Risk Reduction at Incheon (UNISDR ONEA-GETI) cooperation is to obtain knowledge about disaster risk reduction and international experience in this area for creating training courses for basic and additional professional education in RUDN
1129
Similar newsletter View all
15 Jul
RUDN physicians have identified genetic characteristics that may affect the predisposition to re-stenosis

RUDN University physicians have identified genetic characteristics that may affect the predisposition to re-stenosis — narrowing of the lumen of the vessel — after the installation of a stent. The results will help to determine the risk of restenosis and select personalized therapy more accurately.

26
15 Jul
RUDN Chemists Have Created a Reusable Switch Catalyst for The Synthesis of Two Different Compounds

RUDN chemists have created a reusable catalyst for the oxidation of sulfides for the synthesis of drugs, dyes, and other compounds. It can “switch” the final product and provides “green” reaction conditions.

40
15 Jul
Scientists Report New Hydrogel to Protect Wounds from Germs

RUDN University and Shahid Beheshti University (SBU) chemist together with colleagues from Iran created a hydrogel film for wound dressing. It protects the wound from germs and is harmless to healthy tissues. Moreover, its porous structure can hold antibiotic, which kills dangerous microorganisms and provide additional protection.

19
Similar newsletter View all