RUDN Biologists prove the effectiveness of silver nanoparticles against phytopathogens

RUDN Biologists prove the effectiveness of silver nanoparticles against phytopathogens

RUDN University biologists proved the effectiveness of biogenic metal nanoparticles against some fungi infecting plants. The nanoparticles are obtained in a safe way from strawberry leaf extract.

Phytopathogenic fungi Botrytis cinerea, Pilidium concavum and Pestalotia sp affect many plants: strawberries, nightshades, beans and others. RUDN University biologists have proposed a fundamentally new way to combat these phytopathogens. To do this, they used nanoparticles of metals, silver and copper. The nanoparticles are obtained by a green method based on strawberry leaf extract, without no harmful reagents. This is the first successful application of biogenic metal nanoparticles to combat these phytopathogens.

“For evaluation of antifungal activity of these NPs, three pathogenic fungi were selectd: Botrytis cinerea, as an unspecialized necrotrophic fungal pathogen that attacks over 200 different plant species, Pilidium concavum, which is an opportunistic pathogen that causes leaf spots and stem necrosis in a wide range of hosts, mainly on strawberry plants and Pestalotia sp., which is reported to be infectious for azalea leaves. There are just a few reports carried out on the last two fungi, and there is no report on the antifungal effect of nanoparticles on these fungi”, said Maryam Bayat, PhD student at RUDN University.

Silver nanoparticles slowed the growth of B. Cinerea and P. Concavum by 28% and 65.4%, respectively, at 0.01% concentration. The mechanism of this antifungal action is not completely clear, but RUDN University biologists have suggested that silver nanoparticles form pores on the cell membrane of the fungus. It causes the death of the cell and inhibit the budding process. Germination of B. Cinerea spores was completely suppressed by a solution with 0.01% silver nanoparticles concentration. Copper nanoparticles turned out to be ineffective against fungi — they practically did not affect the growth of spores and fungi.

“According to the results, these nanoparticles have the potential to be used as an antimicrobial agent in antibacterial and antifungal remediation or as an additive in conventional formulations. Silver nanoparticles were found to be the more effective antimicrobial agent against all examined pathogens in comparison to copper nanoparticles”, said Meisam Zargar, PhD in agricultural sciences, professor at RUDN University.

The results are published in the Molecules.

30 Jan 2018
The conference on international arbitration, where law students from European universities simulate court proceedings and alternately defend the interests of the respondent and the orator.
Student's Scientific Initiatives View all
03 Nov 2017
June 22 - 26, 2017 in Barnaul, Altai State University, took place the Summer Academy of the BRICS Youth Assembly, an international event that brought together representatives of different countries
Similar newsletter View all
29 Sep
RUDN ecologists obtained hydrogen fuel with the help of iron "sponge"

Scientists have proposed a new catalyst for converting methane into hydrogen — an alternative energy source. The catalyst itself is a simple iron "sponge", an environmentally safe and cheap material.

28 Sep
RUDN neurosurgeons studied the immune response to multiple injuries

RUDN neurosurgeons studied the immune response in polytrauma - multiple serious traumatic lesions. The results will help specialists understand the features of the recovery period and adjust the treatment.

27 Sep
RUDN nanotechnologist creates asphalt modifier from old tires and rubber

A scientist has studied a new way of preparing powder for modifying road surfaces. It consists of obliterated car tires and butadiene styrene rubber.

Similar newsletter View all