2
Mathematicians report new model of tumor growth

Mathematicians report new model of tumor growth

RUDN University mathematician built a model of tumor growth with an account of tissue mechanics. Unlike many others, it is quite simple for numerical and analytical research. It made it possible to reproduce two phenomena described in clinical practice. Further study of the model will allow finding optimal ways to treat tumors.

The number of cells in a cancerous tumor should grow exponentially if the conditions are ideal for them. However, in real practice, such exponential growth is observed only in the early stages of tumor development. The main factors that limit tumor growth are the limitation of the nutrients supply and mechanical stress in the tissues. Mathematical models are used to study these processes. The mathematician from RUDN University proposed a simple mathematical model that takes into account these factors.

“Modeling tumor growth with an account of biomechanical properties is not a very popular area. One of the unexplored topics, to our knowledge, is the combined influence of both crucial growth-limiting factors—nutrient availability and mechanical stress—on tumor growth”, said Maxim Kuznetsov, Ph.D., junior researcher at the S.M. Nikol’skii Mathematical Institute of RUDN University.

The model developed by doctor Kuznetsov describes a tumor and healthy tissues around it as a combination of a solid substance (the porous matrix) and a liquid phase (interstitial fluid). The solid phase can be produced with the use of the liquid phase—this corresponds to the division of cancer cells. On the contrary, cell death corresponds to the transition of the solid phase to the liquid phase. At that, the rates of cell division and death depend on the level of nutrients and mechanical stress. The mathematician of RUDN University described such joint dynamics using a system of differential equations and then studied it analytically and numerically.

As a result, the mathematician discovered two phenomena. The first is the growth of the tumor to a gigantic size (reaching tens of centimeters in diameter in several years). In numerical calculations, this happened under a sufficiently high level of nutrient supply and sufficiently low hydraulic conductivity of the tissue (its property to pass fluid through its pores). Interestingly, such cases are described in real clinical practice. This can happen with tumors which growth is accompanied by abundant production of extracellular matrix.

The second phenomenon is the slowing down of tumor growth because of the mechanical stress at the lowest values of hydraulic conductivity. In such conditions, tumor growth at the first stage does not even depend on the level of nutrient supply. However, further, under a strong nutrient supply, an explosive growth acceleration can happen, so that the growth rate increases tenfold in a few years. Such cases do occur in clinical practice.

“The key task that will be focused on with the use of the developed version of the presented model is the optimization of various types of long-term tumor treatments, associated with the delivery of drugs to the tumor via intravenous injections. Consideration of biphasic tissue and the account for solid stress will allow reproducing adequately the dynamics of drugs and tumor during the course of therapy”, said Maxim Kuznetsov, Ph.D., junior researcher at the S.M. Nikol’skii Mathematical Institute of RUDN University.

The results are published in the journal Mathematics. 

Visiting Professors View all
03 Nov 2017
Michele Pagano is a graduate of the University of Pisa, a leading scientist, the author of more than 200 publications in international journals, and a participant in many international research projects
2828
Student's Scientific Initiatives View all
03 Nov 2017
June 22 - 26, 2017 in Barnaul, Altai State University, took place the Summer Academy of the BRICS Youth Assembly, an international event that brought together representatives of different countries
1554
Similar newsletter View all
19 Apr
A huge pizza and a jug of water, why should 5G networks be sliced? The winners of RUDN science competition explain

RUDN summarized the results of the scientific competition "Project Start: work of the science club ". Students of the Faculty of Physics, Mathematics and Natural Sciences have created a project for a managed queuing system using a neural network to redistribute resources between 5G segments. How to increase flexibility, make the network fast and inexpensive and reach more users — tell Gebrial Ibram Esam Zekri ("Fundamental Computer Science and Information Technology", Master's degree, II course) and Ksenia Leontieva ("Applied Mathematics and Computer Science", Master's degree, I course).

19
19 Apr
Lyricists and physicists are now on equal terms: the first humanitarian laboratory opened in RUDN

What is your first association with the word “laboratory”? Flasks and beakers? Microscopes and centrifuges? Yes, many of us would answer the same way.

18
19 Apr
The National Demographic Report 2023 was published with the participation of RUDN. Demographic well-being of Russian regions

The National Demographic Report, 2023 Demographic Well-Being of Russian Regions (hereinafter - the National Demographic Report) was prepared by the scientific team of the Institute of Demographic Studies of the Federal Research Center of the Russian Academy of Sciences, the Vologda Scientific Center of the Russian Academy of Sciences, Peoples' Friendship University of Russia, the Center for Family and Demography of the Academy of Sciences of the Republic of Tatarstan, as well as with the participation of leading scientists from the Republic of Bashkortostan, Stavropol Krai, Volgograd, Ivanovo, Kaliningrad, Nizhny Novgorod, Sverdlovsk Oblasts and Khanty-Mansi Autonomous Okrug–Yugra.

20
Similar newsletter View all