2
Scientists reveal the water column of the Yamal lakes can be a microbial filter

Scientists reveal the water column of the Yamal lakes can be a microbial filter

Scientists from the Winogradsky Institute of Microbiology RAS, RUDN University, St. Petersburg State University and the Tyumen Scientific Centre SB RAS studied the microbial communities from several lakes of the Yamal Peninsula. It turned out that methanotrophs (bacteria that use methane as a source of energy) consume methane more actively in the deep mature lakes of the peninsula than in small thermokarst lakes. In this regard, methane emissions into the atmosphere from the surface of deep lakes are low, and only small (relatively younger thermokarst lakes with constitutional ground ice) can make a significant contribution to methane emissions in the north of Western Siberia. Thus, bacteria perform an important function for the climate balance — they reduce the emission of methane into the atmosphere.

The active formation of new lakes in the northern regions of the planet is associated with global warming. For example, in the Yamal tundra, new thermokarst lakes originate from the thawing of permafrost. The surface subsides in places where ground ice is thawing, and the depressions are immediately filled with water. Another option for the rapid formation of a new lake is the filling of craters with water, which are formed as the result of methane release from the permafrost. Such young lakes are usually shallow, unlike more mature lakes in the floodplains of rivers. But any lakes in the tundra are a source of methane, one of the greenhouse gases responsible for global warming.

“We can measure the concentration of methane in the water column of the lake; it has different origins. Some of it comes from within permafrost due to the development of taliks (unfrozen ground of the lakes), which were previously ‘locked’ by permafrost. Some is formed due to the metabolic activity of microorganisms in bottom sediments, the processing of organic matter. One way or another, the greenhouse gas rises from the bottom into the atmosphere through the water column. At the same time, part of it is transformed into carbon dioxide along the way. How much methane will eventually emit to the atmosphere depends largely on the activity of bacterial communities in this lake,” — Yury Dvornikov, PhD, junior researcher at the Center for Smart Urban Nature of the RUDN University.

To determine which lakes emit more methane to the atmosphere and why, scientists studied four lakes in the central part of Yamal. Two of them are typical shallow thermokarst lakes that appeared due to the thawing of ground ice, with a depth of about two meters and an area of 3.23 and 4.25 hectares. Others are significantly large, -their areas are 73.6 hectares and 118.6 hectares, and the depth reaches 12 meters. The origin of these two lakes is debatable, but their age is significantly greater since their basin is embedded in all geomorphological levels.

Scientists took 2-4 samples of water from each lake at different depths and collected the sediments samples. They measured the content of methane, dissolved organic carbon, and major ions in all samples, and estimated the volume of bacteria. To determine their species, all DNA was collected from water samples.

The study showed the similar microbial communities in all lakes. But at the same time, the distribution of methane in the water column turned out to be different in deep and shallow lakes. In shallow lakes, the gas is distributed more evenly, and in deep lakes its amount varies — it is 2-10 times higher in the bottom layer than near the surface. Thus, the scientists came to the idea of a “microbial filter” for methane in mature deep lakes.

“In winter, most of the small lakes in Yamal freeze to the bottom, and in the deep ones, methane continues to accumulate under the ice. But in the summer, bacteria in deep lakes increase its processing dramatically. The water column with methanotrophic microbial communities plays the role of a filter: only a small part of the gas in deep lakes passes through it to the surface. This suggests the question of whether a lot of greenhouse gas is really released into the atmosphere from the surface of lakes in the north of Western Siberia. The easiest way to find out is to calculate the shares of the area of ‘young’ and ‘mature’ lakes. This is the goal of our future research, ” — Yury Dvornikov, PhD, junior researcher at the Center for Smart Urban Nature of the RUDN University.

The results are published in Biogeosciences. 

Student's Scientific Initiatives View all
03 Nov 2017
June 22 - 26, 2017 in Barnaul, Altai State University, took place the Summer Academy of the BRICS Youth Assembly, an international event that brought together representatives of different countries
1791
International scientific cooperation View all
16 Oct
530 applications, 90 young scientists from 30 countries. Darya Nazarova, a postgraduate student of RUDN Faculty of Economics, traveled 11,276 km from Moscow to Sao Paulo for the International Scientific School on Technological and Innovation Strategies and Economic Development Policy at the University of Campinas (UNICAMP). Darya Nazarova, a young RUDN scientist, writes about scientific research, rafting and the country of eternal carnival.
83
Similar newsletter View all
16 Oct
Green Diplomacy Center opened in RUDN

A Center for Green Diplomacy was created based on the RUDN Institute of Environmental Engineering. Among the goals is the integration of the results of scientific and practical activities into the development of international relations in the environmental sphere. The center's specialists will also accompany the corporate sector in solving various environmental problems.

131
19 Apr
A huge pizza and a jug of water, why should 5G networks be sliced? The winners of RUDN science competition explain

RUDN summarized the results of the scientific competition "Project Start: work of the science club ". Students of the Faculty of Physics, Mathematics and Natural Sciences have created a project for a managed queuing system using a neural network to redistribute resources between 5G segments. How to increase flexibility, make the network fast and inexpensive and reach more users — tell Gebrial Ibram Esam Zekri ("Fundamental Computer Science and Information Technology", Master's degree, II course) and Ksenia Leontieva ("Applied Mathematics and Computer Science", Master's degree, I course).

184
19 Apr
Lyricists and physicists are now on equal terms: the first humanitarian laboratory opened in RUDN

What is your first association with the word “laboratory”? Flasks and beakers? Microscopes and centrifuges? Yes, many of us would answer the same way.

231
Similar newsletter View all