3
Chemists Reveal Potential of NMR Spectroscopy for Microalgae Study

Chemists Reveal Potential of NMR Spectroscopy for Microalgae Study

RUDN University chemists together with colleagues from India analyzed the microalgae metabolism at the molecular level using nuclear magnetic resonance. The results identified the strengths and weaknesses of this methodology and showed the most promising areas for future development.

Microalgae are used as sources of bioactive substances—they produce secondary metabolites. These substances are useful in different areas, from cosmetology to the chemical industry and energetics. To determine the composition and number of metabolites, they use the phenomenon of nuclear magnetic resonance (NMR), that is producing of electromagnetic signal when the magnetic moment of the nucleus changes. RUDN University chemists, together with colleagues from India, collected research on the use of NMR spectroscopy for the analysis of microalgae and outlined the most effective protocols and promising areas.

“Microalgal biotechnology has emerged that allows the continuous development of microalgae on a commercial scale due to its enormous biodiversity of bioactive components in various applications. Recent progress also unlocked microalgae potentials to uncover a range of novel metabolic capabilities such as fix atmospheric carbon dioxide, valorize waste resources, and turn them into bio-products such as health, cosmetics and natural products for the development towards sustainable bio-refinery. NMR has been one of the top three analytical methods in metabolomics and lipidomics.,” said Vinod Kumar, RUDN University professor.

Chemists analyzed more than 50 papers on this topic. Among the advantages of nuclear magnetic resonance chemists named, for example, the ability to conduct several experiments with a single sample, since NMR does not destroy it. Moreover, NMR requires minimal sample preparation and can detect even previously unknown compounds. However, this method has its drawbacks. NMR is less likely to detect compounds with high molecular weight (such as long chains of fats). In addition, in the graphical representation, the peaks corresponding to different compounds can overlap each other. This makes analysis difficult.

RUDN University chemists concluded that the only way to increase the efficiency of metabolic analysis (to identify as many metabolites as possible) is to use a combination of mass spectroscopy and NMR. Nuclear magnetic resonance helps finding unknown compounds, which can then be accurately searched for in other samples using mass spectroscopy.

“The results obtained by quantitative mass spectroscopy methods are often complementary to those obtained by NMR, with MS methods being better at detecting hydrophobic molecules and NMR being better at detecting hydrophilic molecules of microalgae,” said Vinod Kumar, RUDN University professor.

The study is published in the Archives of Biochemistry and Biophysics. https://www.sciencedirect.com/science/article/abs/pii/S0003986121002368

International scientific cooperation View all
16 Oct
530 applications, 90 young scientists from 30 countries. Darya Nazarova, a postgraduate student of RUDN Faculty of Economics, traveled 11,276 km from Moscow to Sao Paulo for the International Scientific School on Technological and Innovation Strategies and Economic Development Policy at the University of Campinas (UNICAMP). Darya Nazarova, a young RUDN scientist, writes about scientific research, rafting and the country of eternal carnival.
83
Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
1899
Similar newsletter View all
16 Oct
Green Diplomacy Center opened in RUDN

A Center for Green Diplomacy was created based on the RUDN Institute of Environmental Engineering. Among the goals is the integration of the results of scientific and practical activities into the development of international relations in the environmental sphere. The center's specialists will also accompany the corporate sector in solving various environmental problems.

131
19 Apr
A huge pizza and a jug of water, why should 5G networks be sliced? The winners of RUDN science competition explain

RUDN summarized the results of the scientific competition "Project Start: work of the science club ". Students of the Faculty of Physics, Mathematics and Natural Sciences have created a project for a managed queuing system using a neural network to redistribute resources between 5G segments. How to increase flexibility, make the network fast and inexpensive and reach more users — tell Gebrial Ibram Esam Zekri ("Fundamental Computer Science and Information Technology", Master's degree, II course) and Ksenia Leontieva ("Applied Mathematics and Computer Science", Master's degree, I course).

183
19 Apr
Lyricists and physicists are now on equal terms: the first humanitarian laboratory opened in RUDN

What is your first association with the word “laboratory”? Flasks and beakers? Microscopes and centrifuges? Yes, many of us would answer the same way.

231
Similar newsletter View all