1
RUDN Engineers Have Calculated the Parameters of the Heat Rejection System for a Lunar Power Plant

RUDN Engineers Have Calculated the Parameters of the Heat Rejection System for a Lunar Power Plant

RUDN University engineers have calculated the parameters of a system that can prevent lunar power plants from overheating. These developments will be needed when planning for long-term lunar missions and colonizing the satellite.

The colonization of the moon is not only a topic for science fiction. This is a likely stronghold for further study and exploration of space. One of the main challenges that future space missions will face is to provide a reliable source of power. For the Moon, power plants need to be powerful, which is why there is a risk of overheating. This requires heat rejection systems that can work effectively even in extreme conditions. RUDN engineers presented a model for calculating such a radiator — according to the given conditions, it is possible to accurately calculate all the necessary parameters.

“The colonization of the moon should be an important step in preparation for the exploration of Mars. Moon bases will have high power requirements. They should provide energy-intensive scientific experiments, mining and processing of minerals, and surface studies. Therefore, it is very important to provide a reliable and powerful source of energy. Due to the extremely low temperatures and harsh environmental conditions in space, it is quite difficult to reject excess heat from power plants. Therefore, for the efficient operation of the power plants, highly efficient heat rejection systems are needed,” Sergey Smirnov, PhD, Associate Professor of the Department of Power Engineering of RUDN University.

To calculate the radiator according to the proposed model, four main parameters are needed: the amount of heat to be rejected, the minimum temperature of the working fluid, the thermodynamic properties of the fluid, and the ambient temperature. The last parameter is especially important in the case of the Moon, since the conditions on the satellite are extreme. It is assumed that the power plant is located at the pole of the moon, and the working fluids of the radiator are helium and ammonia.

With the help of the new model, it is possible to calculate in detail all the parameters of the radiator, up to the number of pipes and their length. Also, RUDN engineers were able to calculate the possibilities of various refrigerants and their flow regimes. For example, liquid ammonia gives more possibilities in changing the geometric parameters of the radiator, without reducing power. The results of the study are planned to be used in upcoming programs related to space power units of Nauka-Power Technology LLC.

“We have improved the calculations for the heat rejection system. With the new approach, it is easier to determine the main design parameters of the radiator. In addition, it is possible to evaluate the capabilities of the refrigerant and the flow regime. It is important to note that the calculation method is not limited to a specific refrigerant — any refrigerant can be considered,” Hassan Khalife, Assistant Professor, Department of Power Engineering, RUDN University.

The results are published in Symmetry.

International Projects View all
Visiting Professors View all
12 Dec 2024
In 2024, RUDN started accepting applications for the new annual Prize for Scientific Achievement in Chemistry. The award was established to honour contributions to fundamental and applied research, as well as merit in achieving the UN Sustainable Development Goals.
187
Similar newsletter View all
20 Apr
A volunteer of the Red Army and head of the veterinary medicine course — Matilda Mityaeva's combat and scientific path

Matilda Pavlovna Mityaeva was born in 1925. In November 1942, she volunteered for frontline duty. She participated in the Great Patriotic War from November 1942 to June 1945 as part of the 53rd Infantry Division of the 475th Infantry Regiment. She was wounded twice.

24
20 Apr
RUDN University Team – the 1st place in the all-russian competitive selection of scientific projects “Technologies for human health”

The team led by Sergey Zyryanov, Head of the Department of General and Clinical Pharmacology, became the winner of the All-Russian competition of scientific projects "Technologies for Human Health".

32
20 Apr
RUDN University Scientific Agenda to 2030: New Programme for R&D and Innovation Activities Development

RUDN University constantly adapts to the changes of the modern world and responds to challenges flexibly. This allows us to keep the standard of a world-class research university. The sphere of science is no exception. Peter Dokukin, Head of the Research Division, presented the updated R&D Programme at the meeting of the RUDN University Academic Council.

23
Similar newsletter View all