RUDN University chemist created new catalysts for click reactions

RUDN University chemist created new catalysts for click reactions

A chemist from RUDN University has created a series of catalysts for click chemistry. These reactions are widely used in the synthesis of biologically active substances, as well as in biological and medical research. New catalysts produce a yield of 99%. They are based on cyclodextrin and copper ions.

Click chemistry methods are used to synthesize libraries of substances with high chemical diversity, which is important when developing new drugs. These reactions are necessary for introduction of labels (for example, fluorescent ones) into biological macromolecules, proteins, and DNA molecules. This is used in biological and medical research.

The most commonly used click chemistry reaction is the addition of a substance that contains a carbon-carbon triple bond (alkine) to a compound containing a fragment with three nitrogen atoms in a row (azide). The classic version of the reaction involves the use of copper in oxidation state (I) as a catalyst. For this, ions of copper (II) and an excess of a reducing agent are introduced into the reaction, or copper (I) is used and the reaction is conducted with protection against oxygen, which imposes certain restrictions on the application of this reaction.

A chemist from RUDN University Rafael Luque and his colleagues have developed a series of catalysts with copper ions attached to the surface of silica gel particles using cyclic cyclodextrin oligosaccharide. Cyclodextrin consists of seven glucose molecules closed in a cycle. Inside the cycle there is a container that can hold the copper ion and increase its catalytic activity. Ultrasound irradiation was used to facilitate the binding of cyclodextrin to the surface of silica gel.

The effectiveness of the created catalysts was evaluated on a model reaction of phenylacetylene with benzylazide. The researchers managed to achieve a yield of the reaction product of more than 99%. The yield with copper (II) acetate was 14%, and in the case of copper (II) sulfate, the reaction did not occur at all. The method for producing the catalyst is simple, safe for the environment, and cheap; its use does not require to add reducing agents or oxygen-free conditions. The catalysts can find application in the pharmaceutical industry and in biomedical research.

The paper was published in the journal Molecules.

All news
16 Mar
RUDN Research Institute of Molecular and Cellular Medicine is the winner of the Mega-grant of the Russian Science Foundation for 128 million rubles

RUDN University is one of the three winners in the country. The Scientific Research Institute of Molecular and Cellular Medicine of RUDN Institute of Medicine will become a clinical base for a 4-year project in the field of genetic research for the treatment of soft tissue sarcomas.

15 Mar
The chemist RUDN created a catalyst for more efficient oxidation of cyclohexane

The chemist of RUDN together with colleagues from Iran and Spain created a catalyst based on palladium and nickel for the oxidation of cyclohesane in the production of adipic acid, which is used for the production of cleaning products, food dyes and other substances. The new catalyst made it possible to double the consumption of cyclohexane.

10 Mar
Intercultural communication in the context of global integration and the fourth industrial revolution

On February 28, 2023, invited lector Dương Thu Hằng (Head of Department of Vietnamese Literature, Faculty of Philology, Thai Nguyen University, Vietnam) gave lecture entitled “Intercultural communication in the context of global integration and the fourth industrial revolution” within the framework of academic and methodological online seminar of the Foreign Languages Department of the Agrarian and Technological Institute of RUDN University. The lecture was held online via Microsoft Teams. Languages — the Vietnamese language, the English language & the Russian language.