RUDN University mathematicians developed a model of the movement of immune cells

RUDN University mathematicians developed a model of the movement of immune cells

Mathematicians from RUDN University have developed a computational model that allows predicting the mobility of T-lymphocytes, immune cells that recognise and destroy viruses. The model will help, in particular, in the treatment of the immune system disorders, including those that can lead to cancer, and in the development of HIV vaccines.

Antibodies to HIV infection appear in the body about a month after it has been infected. Prior to that, the immunodeficiency virus can freely circulate and multiply in the body. The vaccine should trigger immune responses at an early stage, when the virus can still be destroyed, or its reproduction effectively restrained. To effectively fight viruses, T-lymphocytes need to find infected cells within 18 hours after the latter entered the body, that is, before the moment when the viral particles begin to be released from the infected cells and spread. To create a vaccine, it is necessary to learn how T-lymphocytes move and how they find virus-infected cells. Vitalii Volpert, head of the RUDN University Interdisciplinary center for Mathematical modelling in Biomedicine, and his colleagues created a computer model of the movement of immune cells to find that out. Researchers from the G.I. Marchuk Institute of Numerical Mathematics RAS, Moscow Institute of Physics and Technology, Institute for Problems in Mechanical Engineering RAS, Uppsala University (Sweden), and Pompeu Fabra University (Spain).

Immunologists know that T-lymphocytes move in the intercellular space not randomly, but in search of target cells, that is, cancer cells or cells infected with a virus. To understand how they do it, RUDN University mathematicians created a computer model of the movement of T-lymphocytes.

Usually, conditions under which cells exist in the body and laws of physics which govern them are taken into account for modelling cellular processes. The mathematicians from RUDN University also used real experimental data on the mobility of T cells in their model, among other things. In addition, the model takes into account the interaction of T cells with other cells of the immune system: DC dendritic cells that activate the immune response, CD4 helper cells, and CD8 effector cells that destroy infected cells. To study how to increase the efficiency of the immune response, the RUDN University mathematicians kept changing the parameters of the model by adjusting the “frequency” of different types of immune cells, that is, the proportion of each type in the population, for example, the proportion of cytotoxic T-lymphocytes that “specialise” in searching for cells infected with HIV.

The mathematical modelling showed that 5% frequency of HIV antigen-specific cytotoxic T cells is sufficient to detect infected cells within 18 hours, that is, before the immunodeficiency virus particles are released from the infected cells. If the share of cytotoxic T-lymphocytes is increased from 0.04% to 5%, the model shows that the likelihood of detecting HIV-infected cells within 24 hours also increases by roughly 5 times, from 7-34% to 84-100%.

The results will facilitate, in particular, creation of vaccines against HIV, drugs for autoimmune diseases as well as other disorders associated with immune system dysfunctions. The model created by the RUDN University mathematicians helps to predict the effectiveness of the immune response, determines what characteristics of the behaviour of immune cells help them to stop the development of the disease, and determines the conditions under which the body can fight the infection before the virus begins to multiply intensively.

The study was published in Frontiers in Immunology.

News
All news
Science
30 Jan
RUDN University Chemists Create Substances for Supramolecules Self-assembly

RUDN University chemists derived molecules that can assemble into complex structures using chlorine and bromine halogen atoms. They bind to each other as “velcro” — chlorine “sticks” to bromine, and vice versa. As a result supramolecules are assembled from individual molecules. The obtained substances will help to create supramolecules with catalytic, luminescent, conducting properties.

Science
20 Jan
RUDN University chemist creates nanocatalysts for vanillin synthesis

RUDN University chemist proposed a new method to create catalysts on a porous silicon matrix with metal nanoparticles. Efficient catalysts for organic reactions are obtained, for example, for the synthesis of vanillin, which is in demand in the food and perfume industry.

Science
16 Jan
RUDN University Linguist: Intimidation and Military Rhetoric in the Media during the Pandemic Make People Pessimistic

When talking about COVID-19, television, newspapers, magazines, and social media turn to battle metaphors that make the fight against the pandemic feel like a war. Also, the coronavirus is often discussed in an excessively alarming and threatening tone. This problem is so acute that there is even the term for that — infodemia. It describes the panic in the media and social networks. A linguist of RUDN University studied how such a language affects the notions of people regarding COVID-19.