RUDN professor builds model to assess resilience of systems for nature conservation

RUDN professor builds model to assess resilience of systems for nature conservation

Professor from RUDN has developed a method for quantifying the sustainability of systems. It can be used, for example, to analyze risks in the development of new territories and the dynamics of ecological change.

Originally, the term "stability" in the natural sciences implied the ability of a person or some system to recover from a stressful situation. In the modern understanding, the term is composed of several components: the system's resistance to negative external influences, as well as the ability to recover from disturbances or losses within a reasonable time frame and at a reasonable cost. In this understanding, the phenomenon of resilience is important for many areas, from the protection of natural complexes to psychological support. However, the general laws of systems development are studied in the abstract - without specifying what exactly we are talking about. The professor from the Russian University of Peoples Friendship has suggested his criteria for quantitative evaluation of so-called purposeful systems, those that can change their work depending on internal "goals. This technology can be used, for example, in the development of new territories.

"The search for quantitative parameters determining the sustainability of systems constitutes a separate area of research. According to Russman's conception, they should take into account technical and economic efficiency, stability of development and safety of social, economic and environmental components. Quantitative measurements of sustainability are needed to assess the state of systems in order to choose ways of their development, to do them less harm, to see the reasons for accelerating changes, to reduce risks and avoid threats of destruction," - Valery Lesnykh, PhD in Engineering, Professor of the Department of Technospheric Security, RUDN.

RUDN Researchers and Gazprom Corporation have taken as their basis systems that evolve toward certain goals and achieve them in certain intervals of time. An example would be an ecosystem whose goal is to recover from negative anthropogenic impacts or, for example, a city that is recovering from an earthquake. To quantify sustainability, they applied the parameter "difficulty in achieving the goal." To calculate their model, the scientists chose an approach called trajectory analysis. They considered a generalized, integral indicator - a characteristic of the object of study, which showed the speed and acceleration of changes in the system. This indicator helped to describe on the graph the stable movement of the system toward its goal, as well as the influence of external factors that could interfere with it.

The method developed allowed the RUDN researchers to determine the optimal trajectory that the system should follow to reach its goal. The researchers also determined at what points new measurements should be made to monitor the successful passage of this path or deviations from it. With this model, the stability of the system allows it to remain to some extent in a "corridor" of stable trajectories, which-even despite deviations-will lead to the goal at the end.

"In reality, not all systems necessarily achieve their goal, and in the future we plan to develop our model to overcome this limitation and expand its application. Reliable operation of the system is conditioned by keeping certain characteristics within the set parameters. In practice, deviations on the way to the goal cannot be avoided, but we should try to minimize the deviations in the movement towards the ideal goal, which is expressed in the values of certain parameters," - Valery Lesnykh, PhD in Technical Sciences, Professor of the Department of Technospheric Security, RUDN.

The results of the study were published in International Journal of Mathematical, Engineering and Management Sciences.

30 Jan 2018
The conference on international arbitration, where law students from European universities simulate court proceedings and alternately defend the interests of the respondent and the orator.
Student's Scientific Initiatives View all
03 Nov 2017
June 22 - 26, 2017 in Barnaul, Altai State University, took place the Summer Academy of the BRICS Youth Assembly, an international event that brought together representatives of different countries
Similar newsletter View all
26 Dec 2022
Tissue architecture, cell organization, biomedical products: RUDN University opens a new research and educational resource center

On October 4, the Research and Educational Resource Center (REC) of innovative technologies of immunophenotyping, digital spatial profiling and ultrastructural analysis (molecular morphology) opened at the RUDN.

26 Dec 2022
RUDN scientists suggested how to help the soils of Zaryadye Park

RUDN University scientists conducted a comprehensive soil and environmental survey and took more than 80 soil samples in Zaryadye Park. An assessment of the physicochemical, microbiological, and ecotoxicological properties of soils made it possible to develop recommendations and a plan for the care of soils in analogous landscapes in the park.

26 Dec 2022
RUDN University Chemist Creates Nanofilter to Clean Water from Toxic Dyes

RUDN University chemist with colleagues from India and Korea created a nanofilter for water purification from synthetic dyes. The graphene-based composite can quickly remove up to 100% of harmful compounds from water, and it can be used up to seven times without losing efficiency. In addition, the synthesis of the nanofilter itself is economical and environmentally friendly.

Similar newsletter View all